一什么雪| swan是什么意思| 1959年属什么| 吃钙片有什么好处| 气短心悸是什么意思| 蜂窝网络是什么| 9.6什么星座| 有机食品什么意思| 甲状腺结节看什么科室最好| 多汗症挂什么科| 梅毒单阳性是什么意思| 树菠萝什么时候成熟| 恰如其分是什么意思| 什么东西倒立后会增加一半| 五十知天命是什么意思| 黑茶色是什么颜色| 分散片是什么意思| 吃白糖有什么好处和坏处| 初伏吃什么| 做一半就软了是什么原因| 哺乳期感冒吃什么药| 肠胃不好吃什么药| 一什么家| 时柱比肩是什么意思| 老年人脚肿是什么原因| 运动员心率为什么慢| 金骏眉是什么茶| 热伤风流鼻涕吃什么药| 过敏性紫癜挂什么科| 什么是妈宝男| 异丙醇是什么东西| 发冷是什么原因| 年轻人头晕是什么原因| rolex是什么牌子的手表| 坪效是什么意思| 老年性脑改变是什么意思| 什么是穿刺检查| 为什么会心梗| 王不留行是什么| 湿毒吃什么药最有效| 走马观花的走是什么意思| 司法警察是做什么的| 虾仁炒什么好吃又简单| 被隐翅虫咬了用什么药| 地级市市长什么级别| 排酸肉是什么意思| 当归什么味道| 苦口婆心是什么意思| 不来月经是什么原因| 合流是什么意思| 6s是什么| jimmychoo是什么牌子| 轻度溶血是什么意思| 除了火车什么车最长| 抽烟头晕是什么原因| 忌廉是什么东西| 罗姓男孩取什么名字好| cartoon什么意思| 花生不能和什么食物一起吃| 灰色是什么颜色调出来的| 胸闷是什么感觉| 穷极一生是什么意思| 奥氮平片治疗什么病| 蝈蝈为什么不叫| 炖乌鸡汤放什么配料| 甘油三酯高会引起什么病| 卜在姓氏里读什么| 为什么会长白头发| 胸椎退行性变什么意思| 腋毛有什么作用| 试金石什么意思| 深海鱼都有什么鱼| 属猴的跟什么属相最配| 啮齿类动物什么意思| 1999年发生了什么| 自由奔放是什么生肖| 什么是心梗| 五行是指什么| 急性鼻窦炎吃什么药| 月经很少什么原因| 窝在沙发里是什么歌| 室性早搏是什么意思| pc是什么单位| act什么意思| 蜻蜓属于什么类动物| 惊醒是什么意思| 腹泻恶心想吐是什么原因| 怀孕吃鹅蛋有什么好处| 血糖高吃什么食物最好最佳| 草字头加西念什么| 什么是飞秒手术| 大姨妈发黑是什么原因| 牛筋草有什么作用| 上火了吃什么食物降火| 李子什么时候吃最好| 骨骼是什么意思| 姜对头发有什么作用| 驾驶证扣6分有什么影响| 阿迪达斯neo什么意思| 舅子是什么意思| 阿尔兹海默症吃什么药| zfc是什么牌子| 头痛吃什么药最好| 吃百香果有什么好处| 瘟神是什么意思| 春饼卷什么菜好吃| 槐花蜜是什么颜色| 沙眼衣原体是什么| 什么是外心| 急性扁桃体化脓是什么原因引起的| 卧轨是什么意思| 一什么牌子| 种牙和假牙有什么区别| 疑神疑鬼是什么意思| 嗓子疼咽口水都疼吃什么药| 经常流鼻涕是什么原因引起的| 戊型肝炎是什么病| momo是什么意思| 7月10号是什么星座| 盆腔积液是什么原因引起的| 实证是什么意思| 细菌性阴道炎用什么洗液| 卡地亚手表什么档次| 萨洛蒙什么档次| 急性胃肠炎用什么抗生素| 线差是什么意思| 肝脏在人体的什么位置| 男人有美人尖代表什么| 白莲子和红莲子有什么区别| 幼小衔接都学什么知识| 什么螺不能吃| 为什么男生喜欢女生的脚| 纸醉金迷是什么意思| 夏令时什么意思| yet是什么意思| 乌龟爬进家暗示什么| ozark是什么牌子| 小猫为什么会踩奶| ipv是什么疫苗| 小孩几天不大便是什么原因怎么办| 木薯粉在超市里叫什么| 马虎是什么意思| 吃什么食物补阳气| 啤酒加生鸡蛋一起喝有什么效果| 挂读是什么意思| 白癜风早期症状是什么| 孙尚香字什么| 头晕用什么药| 圣诞节什么时候| 厌恶是什么意思| 男生第一次什么感觉| 什么地照着| 做好自己是什么意思| 濯清涟而不妖的濯是什么意思| 小孩手足口病吃什么药| 湿疹擦什么药好| 肾结石吃什么水果好| 指甲薄软是什么原因| 属马本命佛是什么佛| 甲亢在中医里叫什么病| 蜜蜡脱毛有什么危害吗| 血是什么颜色| 悬饮是什么意思| 2018年属什么生肖| 盐水洗脸有什么好处| 真性情是什么意思| 读军校需要什么条件| 香蕉和什么一起吃能减肥| 脑膜瘤钙化意味着什么| 肉芽是什么| 深海鱼油的作用是什么| 应届毕业生是什么意思| 胆结石吃什么最好| 属牛的本命佛是什么佛| 什么水果有助于减肥| 血压什么时间测量最准| 人为什么有五根手指| 为什么会缺乏维生素d| 异国风情是什么意思| 被口什么感觉| ooxx是什么意思| 翩翩起舞是什么意思| 怀孕脸上长痘痘是什么原因| 蛇吐信子是什么意思| 经常打哈欠是什么原因| 15朵玫瑰花代表什么意思| 肝低回声结节是什么意思| 夏天吃什么汤| 两个月没有来月经了是什么原因| 经期头疼是什么原因怎么办| 一路向北是什么意思| 红海为什么叫红海| 拉黄水是什么原因| 最好的补钙方法是什么| 皮肤瘙痒症用什么药| 食字五行属什么| 排卵期是在什么时候| 总蛋白偏低是什么意思| 天井是什么意思| 尿酸高吃什么药好| 拔牙第二天可以吃什么| 为什么早射| 干眼症吃什么药| 三级综合医院是什么意思| 凤毛麟角什么意思| 脸上爱出油是什么原因| 白色泡沫痰是什么原因| 南海龙王叫什么| laura是什么意思| 马来玉是什么玉| 男人阳虚吃什么药最好| 为情所困是什么意思| 梦见弟媳妇是什么预兆| 小肚子疼是什么原因女性| 獭尾肝是什么病| 双肾实质回声增强是什么意思| 牙齿黄是什么原因| 用什么点豆腐最健康| 呃逆吃什么药| imp什么意思| 胃糜烂可以吃什么水果| 护理专业主要学什么| 梦见两条蛇是什么预兆| 什么是地包天牙齿图片| 布洛芬有什么副作用| 盛世的意思是什么| 为什么会一直放屁| 悲欢离合是什么意思| 为什么会长闭口粉刺| 热疹症状该用什么药膏| 龙虾吃什么| 4月28日什么星座| 孔雀男是什么意思| 戊戌是什么意思| 肺纹理增强是什么意思| 霰粒肿用什么药| 弯脚杆是什么意思| 香港的海是什么海| bace是什么意思| 吃什么对头发好| 如法炮制是什么意思| 氯偏高是什么原因| 心脏有个小洞叫什么病| 甘油三酯高用什么药好| 走之旁与什么有关| 沙僧的武器叫什么名字| 梦见白发是什么意思| 胸胀痛什么原因| 狮子座和什么座最配| 蜻蜓吃什么食物| 什么情况不能献血| 腰痛贴什么膏药最好| 晚上看见蛇有什么预兆| 莲子有什么功效和作用| 肤色不均匀是什么原因| 为什么吃芒果会过敏| 为什么积食发烧很难退| 胸膜炎吃什么药| 什么奶粉好吸收好消化| 地面铺什么最环保| 中午吃什么饭 家常菜| kps是什么意思| 家蛇是什么蛇| 不问世事什么意思| 百度Jump to content

斯柯达与大众共享电动车平台 产品将达5款

From Wikipedia, the free encyclopedia
Content deleted Content added
small typo in the arifmetic summation
Tag: Reverted
Line 24: Line 24:
For {{mvar|n}} an integer, {{math|?''n''? {{=}} ?''n''? {{=}} ''n''}}.
For {{mvar|n}} an integer, {{math|?''n''? {{=}} ?''n''? {{=}} ''n''}}.


Although {{math|floor(''x+1'')}} and {{math|ceil(''x'')}} produce graphs that appear exactly alike, they are not the same when the value of x is an exact integer. For example, when {{mvar|x}}=2.0001; {{math|?2.0001+1? {{=}} ?3.0001? {{=}} 3}}. However, if {{mvar|x}}=2, then {{math|?2+1? {{=}} 3}}, while {{math|?2? {{=}} 2}}.
Although {{math|floor(''x+1'')}} and {{math|ceil(''x'')}} produce graphs that appear exactly alike, they are not the same when the value of x is an exact integer. For example, when {{mvar|x}}=2.0001; {{math|?2.0001+1? {{=}} ?2.0001? {{=}} 3}}. However, if {{mvar|x}}=2, then {{math|?2+1? {{=}} 3}}, while {{math|?2? {{=}} 2}}.


{| class="wikitable" title
{| class="wikitable" title

Revision as of 18:20, 9 February 2025

百度 ”24日在厦门举行的第十三届台湾专业人才厦门对接会上,福建晶安光电生产管理部负责人余学志说。

Floor and ceiling functions
Floor function
Ceiling function

In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ?x? or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ?x? or ceil(x).[1]

For example, for floor: ?2.4? = 2, ?−2.4? = −3, and for ceiling: ?2.4? = 3, and ?−2.4? = −2.

The floor of x is also called the integral part, integer part, greatest integer, or entier of x, and was historically denoted [x] (among other notations).[2] However, the same term, integer part, is also used for truncation towards zero, which differs from the floor function for negative numbers.

For n an integer, ?n? = ?n? = n.

Although floor(x+1) and ceil(x) produce graphs that appear exactly alike, they are not the same when the value of x is an exact integer. For example, when x=2.0001; ?2.0001+1? = ?2.0001? = 3. However, if x=2, then ?2+1? = 3, while ?2? = 2.

Examples
x Floor ?x? Ceiling ?x? Fractional part {x}
2 2 2 0
2.0001 2 3 0.0001
2.4 2 3 0.4
2.9 2 3 0.9
2.999 2 3 0.999
−2.7 −3 −2 0.3
−2 −2 −2 0

Notation

The integral part or integer part of a number (partie entière in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula.

Carl Friedrich Gauss introduced the square bracket notation [x] in his third proof of quadratic reciprocity (1808).[3] This remained the standard[4] in mathematics until Kenneth E. Iverson introduced, in his 1962 book A Programming Language, the names "floor" and "ceiling" and the corresponding notations ?x? and ?x?.[5][6] (Iverson used square brackets for a different purpose, the Iverson bracket notation.) Both notations are now used in mathematics, although Iverson's notation will be followed in this article.

In some sources, boldface or double brackets ?x? are used for floor, and reversed brackets ?x? or ]x[ for ceiling.[7][8]

The fractional part is the sawtooth function, denoted by {x} for real x and defined by the formula

{x} = x ? ?x?[9]

For all x,

0 ≤ {x} < 1.

These characters are provided in Unicode:

  • U+2308 LEFT CEILING (&lceil;, &LeftCeiling;)
  • U+2309 RIGHT CEILING (&rceil;, &RightCeiling;)
  • U+230A LEFT FLOOR (&LeftFloor;, &lfloor;)
  • U+230B RIGHT FLOOR (&rfloor;, &RightFloor;)

In the LaTeX typesetting system, these symbols can be specified with the \lceil, \rceil, \lfloor, and \rfloor commands in math mode. LaTeX has supported UTF-8 since 2018, so the Unicode characters can now be used directly.[10] Larger versions are\left\lceil, \right\rceil, \left\lfloor, and \right\rfloor.

Definition and properties

Given real numbers x and y, integers m and n and the set of integers , floor and ceiling may be defined by the equations

Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation

where  and  may also be taken as the definition of floor and ceiling.

Equivalences

These formulas can be used to simplify expressions involving floors and ceilings.[11]

In the language of order theory, the floor function is a residuated mapping, that is, part of a Galois connection: it is the upper adjoint of the function that embeds the integers into the reals.

These formulas show how adding an integer n to the arguments affects the functions:

The above are never true if n is not an integer; however, for every x and y, the following inequalities hold:

Monotonicity

Both floor and ceiling functions are monotonically non-decreasing functions:

Relations among the functions

It is clear from the definitions that

with equality if and only if x is an integer, i.e.

In fact, for integers n, both floor and ceiling functions are the identity:

Negating the argument switches floor and ceiling and changes the sign:

and:

Negating the argument complements the fractional part:

The floor, ceiling, and fractional part functions are idempotent:

The result of nested floor or ceiling functions is the innermost function:

due to the identity property for integers.

Quotients

If m and n are integers and n ≠ 0,

If n is a positive integer[12]

If m is positive[13]

For m = 2 these imply

More generally,[14] for positive m (See Hermite's identity)

The following can be used to convert floors to ceilings and vice versa (m positive)[15]

For all m and n strictly positive integers:[16]

which, for positive and coprime m and n, reduces to

and similarly for the ceiling and fractional part functions (still for positive and coprime m and n),


Since the right-hand side of the general case is symmetrical in m and n, this implies that

More generally, if m and n are positive,

This is sometimes called a reciprocity law.[17]

Division by positive integers gives rise to an interesting and sometimes useful property. Assuming ,

Similarly,

Indeed,

keeping in mind that The second equivalence involving the ceiling function can be proved similarly.

Nested divisions

For positive integer n, and arbitrary real numbers m,x:[18]

Continuity and series expansions

None of the functions discussed in this article are continuous, but all are piecewise linear: the functions , , and have discontinuities at the integers.

is upper semi-continuous and and are lower semi-continuous.

Since none of the functions discussed in this article are continuous, none of them have a power series expansion. Since floor and ceiling are not periodic, they do not have uniformly convergent Fourier series expansions. The fractional part function has Fourier series expansion[19] for x not an integer.

At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true value.

Using the formula gives for x not an integer.

Applications

Mod operator

For an integer x and a positive integer y, the modulo operation, denoted by x mod y, gives the value of the remainder when x is divided by y. This definition can be extended to real x and y, y ≠ 0, by the formula

Then it follows from the definition of floor function that this extended operation satisfies many natural properties. Notably, x mod y is always between 0 and y, i.e.,

if y is positive,

and if y is negative,

Quadratic reciprocity

Gauss's third proof of quadratic reciprocity, as modified by Eisenstein, has two basic steps.[20][21]

Let p and q be distinct positive odd prime numbers, and let

First, Gauss's lemma is used to show that the Legendre symbols are given by

The second step is to use a geometric argument to show that

Combining these formulas gives quadratic reciprocity in the form

There are formulas that use floor to express the quadratic character of small numbers mod odd primes p:[22]

Rounding

For an arbitrary real number , rounding to the nearest integer with tie breaking towards positive infinity is given by ; rounding towards negative infinity is given as .

If tie-breaking is away from 0, then the rounding function is (see sign function), and rounding towards even can be expressed with the more cumbersome , which is the above expression for rounding towards positive infinity minus an integrality indicator for .

Rounding a real number to the nearest integer value forms a very basic type of quantizer – a uniform one. A typical (mid-tread) uniform quantizer with a quantization step size equal to some value can be expressed as

,

Number of digits

The number of digits in base b of a positive integer k is

Number of strings without repeated characters

The number of possible strings of arbitrary length that doesn't use any character twice is given by[23][better source needed]

where:

  • n > 0 is the number of letters in the alphabet (e.g., 26 in English)
  • the falling factorial denotes the number of strings of length k that don't use any character twice.
  • n! denotes the factorial of n
  • e = 2.718... is Euler's number

For n = 26, this comes out to 1096259850353149530222034277.

Factors of factorials

Let n be a positive integer and p a positive prime number. The exponent of the highest power of p that divides n! is given by a version of Legendre's formula[24]

where is the way of writing n in base p. This is a finite sum, since the floors are zero when pk > n.

Beatty sequence

The Beatty sequence shows how every positive irrational number gives rise to a partition of the natural numbers into two sequences via the floor function.[25]

Euler's constant (γ)

There are formulas for Euler's constant γ = 0.57721 56649 ... that involve the floor and ceiling, e.g.[26]

and

Riemann zeta function (ζ)

The fractional part function also shows up in integral representations of the Riemann zeta function. It is straightforward to prove (using integration by parts)[27] that if is any function with a continuous derivative in the closed interval [a, b],

Letting for real part of s greater than 1 and letting a and b be integers, and letting b approach infinity gives

This formula is valid for all s with real part greater than −1, (except s = 1, where there is a pole) and combined with the Fourier expansion for {x} can be used to extend the zeta function to the entire complex plane and to prove its functional equation.[28]

For s = σ + it in the critical strip 0 < σ < 1,

In 1947 van der Pol used this representation to construct an analogue computer for finding roots of the zeta function.[29]

Formulas for prime numbers

The floor function appears in several formulas characterizing prime numbers. For example, since is equal to 1 if m divides n, and to 0 otherwise, it follows that a positive integer n is a prime if and only if[30]

One may also give formulas for producing the prime numbers. For example, let pn be the n-th prime, and for any integer r > 1, define the real number α by the sum

Then[31]

A similar result is that there is a number θ = 1.3064... (Mills' constant) with the property that

are all prime.[32]

There is also a number ω = 1.9287800... with the property that

are all prime.[32]

Let π(x) be the number of primes less than or equal to x. It is a straightforward deduction from Wilson's theorem that[33]

Also, if n ≥ 2,[34]

None of the formulas in this section are of any practical use.[35][36]

Solved problems

Ramanujan submitted these problems to the Journal of the Indian Mathematical Society.[37]

If n is a positive integer, prove that

Some generalizations to the above floor function identities have been proven.[38]

Unsolved problem

The study of Waring's problem has led to an unsolved problem:

Are there any positive integers k ≥ 6 such that[39]

Mahler has proved there can only be a finite number of such k; none are known.[40]

Computer implementations

Int function from floating-point conversion in C

In most programming languages, the simplest method to convert a floating point number to an integer does not do floor or ceiling, but truncation. The reason for this is historical, as the first machines used ones' complement and truncation was simpler to implement (floor is simpler in two's complement). FORTRAN was defined to require this behavior and thus almost all processors implement conversion this way. Some consider this to be an unfortunate historical design decision that has led to bugs handling negative offsets and graphics on the negative side of the origin.[citation needed]

An arithmetic right-shift of a signed integer by is the same as . Division by a power of 2 is often written as a right-shift, not for optimization as might be assumed, but because the floor of negative results is required. Assuming such shifts are "premature optimization" and replacing them with division can break software.[citation needed]

Many programming languages (including C, C++,[41][42] C#,[43][44] Java,[45][46] Julia,[47] PHP,[48][49] R,[50] and Python[51]) provide standard functions for floor and ceiling, usually called floor and ceil, or less commonly ceiling.[52] The language APL uses ?x for floor. The J Programming Language, a follow-on to APL that is designed to use standard keyboard symbols, uses <. for floor and >. for ceiling.[53] ALGOL usesentier for floor.

In Microsoft Excel the function INT rounds down rather than toward zero,[54] while FLOOR rounds toward zero, the opposite of what "int" and "floor" do in other languages. Since 2010 FLOOR has been changed to error if the number is negative.[55] The OpenDocument file format, as used by OpenOffice.org, Libreoffice and others, INT[56] and FLOOR both do floor, and FLOOR has a third argument to reproduce Excel's earlier behavior.[57]

See also

Citations

  1. ^ Graham, Knuth, & Patashnik, Ch. 3.1
  2. ^ 1) Luke Heaton, A Brief History of Mathematical Thought, 2015, ISBN 1472117158 (n.p.)
    2) Albert A. Blank et al., Calculus: Differential Calculus, 1968, p. 259
    3) John W. Warris, Horst Stocker, Handbook of mathematics and computational science, 1998, ISBN 0387947469, p. 151
  3. ^ Lemmermeyer, pp. 10, 23.
  4. ^ e.g. Cassels, Hardy & Wright, and Ribenboim use Gauss's notation. Graham, Knuth & Patashnik, and Crandall & Pomerance use Iverson's.
  5. ^ Iverson, p. 12.
  6. ^ Higham, p. 25.
  7. ^ Mathwords: Floor Function.
  8. ^ Mathwords: Ceiling Function
  9. ^ Graham, Knuth, & Patashnik, p. 70.
  10. ^ "LaTeX News, Issue 28" (PDF; 379 KB). The LaTeX Project. April 2018. Retrieved 27 July 2024.
  11. ^ Graham, Knuth, & Patashink, Ch. 3
  12. ^ Graham, Knuth, & Patashnik, p. 73
  13. ^ Graham, Knuth, & Patashnik, p. 85
  14. ^ Graham, Knuth, & Patashnik, p. 85 and Ex. 3.15
  15. ^ Graham, Knuth, & Patashnik, Ex. 3.12
  16. ^ Graham, Knuth, & Patashnik, p. 94.
  17. ^ Graham, Knuth, & Patashnik, p. 94
  18. ^ Graham, Knuth, & Patashnik, p. 71, apply theorem 3.10 with x/m as input and the division by n as function
  19. ^ Titchmarsh, p. 15, Eq. 2.1.7
  20. ^ Lemmermeyer, § 1.4, Ex. 1.32–1.33
  21. ^ Hardy & Wright, §§ 6.11–6.13
  22. ^ Lemmermeyer, p. 25
  23. ^ OEIS sequence A000522 (Total number of arrangements of a set with n elements: a(n) = Sum_{k=0..n} n!/k!.) (See Formulas.)
  24. ^ Hardy & Wright, Th. 416
  25. ^ Graham, Knuth, & Patashnik, pp. 77–78
  26. ^ These formulas are from the Wikipedia article Euler's constant, which has many more.
  27. ^ Titchmarsh, p. 13
  28. ^ Titchmarsh, pp.14–15
  29. ^ Crandall & Pomerance, p. 391
  30. ^ Crandall & Pomerance, Ex. 1.3, p. 46. The infinite upper limit of the sum can be replaced with n. An equivalent condition is n > 1 is prime if and only if .
  31. ^ Hardy & Wright, § 22.3
  32. ^ a b Ribenboim, p. 186
  33. ^ Ribenboim, p. 181
  34. ^ Crandall & Pomerance, Ex. 1.4, p. 46
  35. ^ Ribenboim, p. 180 says that "Despite the nil practical value of the formulas ... [they] may have some relevance to logicians who wish to understand clearly how various parts of arithmetic may be deduced from different axiomatzations ... "
  36. ^ Hardy & Wright, pp. 344—345 "Any one of these formulas (or any similar one) would attain a different status if the exact value of the number α ... could be expressed independently of the primes. There seems no likelihood of this, but it cannot be ruled out as entirely impossible."
  37. ^ Ramanujan, Question 723, Papers p. 332
  38. ^ Somu, Sai Teja; Kukla, Andrzej (2022). "On some generalizations to floor function identities of Ramanujan" (PDF). Integers. 22. arXiv:2109.03680.
  39. ^ Hardy & Wright, p. 337
  40. ^ Mahler, Kurt (1957). "On the fractional parts of the powers of a rational number II". Mathematika. 4 (2): 122–124. doi:10.1112/S0025579300001170.
  41. ^ "C++ reference of floor function". Retrieved 5 December 2010.
  42. ^ "C++ reference of ceil function". Retrieved 5 December 2010.
  43. ^ dotnet-bot. "Math.Floor Method (System)". docs.microsoft.com. Retrieved 28 November 2019.
  44. ^ dotnet-bot. "Math.Ceiling Method (System)". docs.microsoft.com. Retrieved 28 November 2019.
  45. ^ "Math (Java SE 9 & JDK 9 )". docs.oracle.com. Retrieved 20 November 2018.
  46. ^ "Math (Java SE 9 & JDK 9 )". docs.oracle.com. Retrieved 20 November 2018.
  47. ^ "Math (Julia v1.10)". docs.julialang.org/en/v1/. Retrieved 4 September 2024.
  48. ^ "PHP manual for ceil function". Retrieved 18 July 2013.
  49. ^ "PHP manual for floor function". Retrieved 18 July 2013.
  50. ^ "R: Rounding of Numbers".
  51. ^ "Python manual for math module". Retrieved 18 July 2013.
  52. ^ Sullivan, p. 86.
  53. ^ "Vocabulary". J Language. Retrieved 6 September 2011.
  54. ^ "INT function". Retrieved 29 October 2021.
  55. ^ "FLOOR function". Retrieved 29 October 2021.
  56. ^ "Documentation/How Tos/Calc: INT function". Retrieved 29 October 2021.
  57. ^ "Documentation/How Tos/Calc: FLOOR function". Retrieved 29 October 2021.

References

痔疮发痒是什么原因 尿潴留是什么原因引起的 烧仙草是什么植物 心率快是什么原因 结晶是什么意思
馄饨皮可以做什么美食 酉什么意思 为什么饿的很快 专车是什么意思 烂嘴唇是什么原因引起的
火烧火燎是什么意思 142是什么意思 小儿风寒感冒吃什么药最好 哥子是什么意思 1985年牛五行属什么
骸骨是什么意思 cos是什么牌子 梦见自己鞋子破了是什么意思 真命天子是什么生肖 cbp是什么意思
胶原蛋白是什么hcv8jop3ns2r.cn 激素吃多了对身体有什么副作用0297y7.com 九九年属什么hcv8jop9ns0r.cn 免贵姓是什么意思hanqikai.com 陶渊明是什么派诗人hcv8jop4ns0r.cn
水泡长什么样子图片hcv8jop3ns6r.cn 家有蝙蝠是什么兆头hcv9jop5ns8r.cn 低血钾有什么症状hcv7jop9ns9r.cn emerson是什么牌子hcv9jop5ns0r.cn 上海特产是什么hcv8jop9ns9r.cn
塞药塞到什么位置hcv7jop5ns2r.cn ki是什么意思hcv9jop1ns5r.cn 吕布为什么要杀董卓hcv8jop3ns3r.cn 什么东西抗衰老最好hcv7jop6ns9r.cn 脚底心发热是什么原因jinxinzhichuang.com
什么动物不喝水hcv9jop2ns9r.cn 00属什么hcv9jop6ns1r.cn 金骏眉茶是什么茶hcv8jop6ns2r.cn 调节肠道菌群吃什么药hcv9jop5ns2r.cn 沙茶是什么hcv7jop6ns1r.cn
百度