剁椒鱼头是什么菜系| 华伦天奴属于什么档次| 胆囊壁结晶是什么意思| 怀孕初期吃什么食物好| 腰酸是什么原因女性| 车水马龙的意思是什么| 开除党籍有什么后果| 走路有什么好处及功效| 喝茶水对身体有什么好处| 4月18号是什么星座| 晨起嘴苦是什么原因| 秋葵不适宜什么人吃| 三月三是什么星座| 夏的五行属什么| 乳腺结节三级是什么意思| 胃一阵一阵的疼是什么原因| 低压低什么原因| 麦霸什么意思| 港式按摩是什么意思| 缺维生素c会得什么病| 素质教育是什么| 8月6号什么星座| NF什么意思| 艾特是什么意思| 滑精是什么原因| 天仙是什么意思| 萝莉控是什么意思| 鲫鱼不能和什么一起吃| 属牛的婚配什么属相最好| ACG是什么牌子| 册封是什么意思| 为什么打哈欠| 左眼老是跳是什么原因| 龟头是什么意思| 为什么不能踩死蜈蚣| 三维彩超主要检查什么| 30号来的月经什么时候是排卵期| 男人阴虱用什么药| 空调外机风扇不转是什么原因| 嘴唇暗红色是什么原因| 泡沫尿是什么病| 征信对个人有什么影响| 顺位是什么意思| 梦见买东西是什么意思| 黄牛用的什么抢票软件| 青葱岁月是什么意思| 岁贡生是什么意思| 品牌logo是什么意思| 4月17日是什么星座| 喝酒头晕是什么原因| 飞机上不能带什么东西| 低烧不退是什么原因| 孤魂野鬼是什么生肖| 过什么意思| 脾虚痰湿吃什么中成药| 马的贵人是什么生肖| 芹菜可以炒什么| 大专有什么专业| 猴子下山的故事告诉我们什么| 月子里可以吃什么水果| 可颂是什么意思| 下面瘙痒用什么药膏| 平均红细胞体积偏高是什么原因| 鱼油什么人不能吃| 贫血喝什么口服液最好| 足踝外科主要看什么| 脸两侧长痘痘是什么原因| 胆固醇高是什么| 欧米茄什么意思| 白内障有什么症状| 敲打是什么意思| 不甚是什么意思| 红光对皮肤有什么作用| 戒断反应是什么意思| 大学211和985是什么意思| 乙肝五项45阳性是什么意思| 抑郁症有什么表现| 北上广深是什么意思| 无语什么意思| 肝脏在什么位置| 日出东方下一句是什么| 核磁dwi是什么意思| 传染病八项包括什么| 早饱是什么意思| 绿豆汤放什么糖最好| 动物的尾巴有什么用处| 经期头痛吃什么药| 但闻人语响的但是什么意思| 调羹是什么意思| 喝绿豆汤有什么好处| 猫咪吐黄水有泡沫没有精神吃什么药| 陶渊明世称什么| 血糖高看什么科| 猫的胡须有什么用处| 什么是生化妊娠| 夏天不出汗是什么原因| 什么糖不能吃| 例假为什么第一天最疼| 卯时属什么生肖| 蝼蛄是什么| 蓝色和红色混合是什么颜色| 用一什么就什么造句| 手脚麻是什么原因| 餐后血糖高是什么原因| 金童玉女指什么生肖| 降血脂吃什么| 雷人是什么意思啊| 朗格手表什么档次| 11月1日是什么星座| 扇子骨是什么肉| 头晕头疼挂什么科| 肉桂茶属于什么茶| 仕字五行属什么| 五百年前是什么朝代| 六字真言是什么意思| 动脉硬化吃什么药| 糖类抗原125是什么意思| 主意正是什么意思| 3月16号是什么星座| 冲正什么意思| 泾渭分明是什么意思| 葡萄像什么| 鸳鸯是什么意思| 吃了避孕药会有什么副作用| 包皮看什么科| 31岁属什么生肖| 万宝龙属于什么档次| 小黄人是什么意思| 正常白带是什么味道| 缺锌有什么症状| 花胶是什么鱼的鱼肚| 2020年什么年| 鸡屎藤和什么相克| 脂肪肝挂什么科| 为什么水不能燃烧| he是什么气体| 小孩子注意力不集中是什么原因| 甲胎蛋白偏高是什么原因| 一什么节日| 贵是什么意思| 四不伤害是指什么| 心里烦躁是什么原因| 脑堵塞有什么症状| 梦见做饭是什么意思| 脚踝肿了是什么原因| 属鼠的本命佛是什么佛| 良善是什么意思| 福兮祸兮是什么意思| 白蚁吃什么| 死于非命是什么意思| 一个骨一个宽是什么字| 大象的鼻子为什么那么长| 一般什么人容易得甲亢| 两点水的字和什么有关| 儿童头晕挂什么科| 市委讲师团是什么级别| 热脸贴冷屁股是什么意思| 开救护车需要什么驾照| 肝硬化早期有什么症状| 羊是什么命| 血栓弹力图是查什么的| 复方丹参片治什么病| 腿膝盖后面的窝窝疼是什么原因| 黄体酮有什么作用与功效| 坐月子吃什么下奶最快最多最有效| 子宫内膜增厚是什么意思| 什么叫皈依| 算什么男人歌词| 出梅是什么意思| 彼岸花什么时候开花| 性冷淡吃什么药| 螳螂捕蝉黄雀在后是什么意思| 三个手念什么| 黄花菜都凉了是什么意思| 查肺部挂什么科| 大暑吃什么| 一什么大风| 项羽的老婆叫什么| 牛初乳是什么| 发烧吃什么药| 天然气是什么气体| 呼呼是什么意思| 阴道里面瘙痒是什么原因| 梨的功效与作用是什么| 肺结核早期有什么症状| 可以是什么意思| 宝宝手心热是什么原因| 连坐是什么意思| 赎罪是什么意思| 国际章是什么意思| 农历9月21日是什么星座| 怀孕有什么表现| 神经衰弱吃什么药效果最好| 脂肪球是什么意思| 今年贵庚是什么意思| 手麻疼是什么原因引起| 鸡胸是什么病| 钠高是什么原因| 脱发缺什么维生素| 小孩喉咙发炎吃什么药好| 水痘不能吃什么食物| 四月二号是什么星座| 什么有助于睡眠| 乳房旁边疼是什么原因| 冬天喝什么茶好呢| 即使什么也什么造句| 存脐带血有什么用| 老黄瓜炖什么好吃| 耳朵嗡嗡响是什么原因| 什么情况要做支气管镜| 心源性哮喘首选什么药| 吃巧克力有什么好处| 郁郁寡欢什么意思| 女人颧骨高有什么说法| 尊敬是什么意思| 梦到捡菌子是什么意思| 医保卡有什么用| 蓝莓是什么季节的水果| 喉软骨发育不良有什么症状| 什么叫室性早搏| 颈动脉强回声斑块是什么意思| 汗斑用什么药擦最有效| 笄礼是什么意思| 什么的尾巴长不了歇后语| 丝字五行属什么| 五位一体是什么| 小朋友眼袋很重是什么原因| 男人脚肿是什么病的前兆| 御风是什么意思| 四爱是什么意思| 白癜风不能吃什么食物| 姑奶奶的老公叫什么| 郴州有什么好玩的景点| 每天吃什么菜谱星期表| 夏季适合喝什么茶| 胸下面是什么部位| 脖子上有结节挂什么科| 小资生活是什么意思| 什么水果可以降火| 看心脏挂什么科| 农历今天属什么生肖| 过敏能吃什么| 夏天可以做什么| 甲状腺实性结节什么意思| 舌头发白吃什么药| 掉头发什么原因| baron是什么意思| 拉肚子吃点什么食物好| 倒斗是什么意思| 老是嗝气是什么原因| 到是什么意思| 肠鸣吃什么药| 小壁虎进家有什么预兆| 世界上最小的动物是什么| 菲妮迪女装是什么档次| nsnm什么意思| 蜱虫是什么样子的| 梦见洗碗是什么预兆| 炖牛肉放什么料| 大林木命适合做什么行业| 维c有什么功效和作用| amber是什么意思| 梦到和老公离婚了是什么征兆| 1月17号是什么星座| 百度Jump to content

休斯敦赛约翰森力克巴西一哥 首摘红土赛冠军

From Wikipedia, the free encyclopedia
(Redirected from Automated timetabling)
百度   作表率形成“头雁效应”  习近平在认真审阅中央政治局同志的述职报告后说,每位中央政治局同志都必须不忘初心、牢记使命,胸怀大局、执政为民,勇于开拓、敢于担当,克己奉公、廉洁自律,发挥示范带头作用,以实际行动团结带领各级干部和广大人民群众,万众一心为实现“两个一百年”奋斗目标而努力奋斗。

Automated planning and scheduling, sometimes denoted as simply AI planning,[1] is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory.

In known environments with available models, planning can be done offline. Solutions can be found and evaluated prior to execution. In dynamically unknown environments, the strategy often needs to be revised online. Models and policies must be adapted. Solutions usually resort to iterative trial and error processes commonly seen in artificial intelligence. These include dynamic programming, reinforcement learning and combinatorial optimization. Languages used to describe planning and scheduling are often called action languages.

Overview

[edit]

Given a description of the possible initial states of the world, a description of the desired goals, and a description of a set of possible actions, the planning problem is to synthesize a plan that is guaranteed (when applied to any of the initial states) to generate a state which contains the desired goals (such a state is called a goal state).

The difficulty of planning is dependent on the simplifying assumptions employed. Several classes of planning problems can be identified depending on the properties the problems have in several dimensions.

  • Are the actions deterministic or non-deterministic? For nondeterministic actions, are the associated probabilities available?
  • Are the state variables discrete or continuous? If they are discrete, do they have only a finite number of possible values?
  • Can the current state be observed unambiguously? There can be full observability and partial observability.
  • How many initial states are there, finite or arbitrarily many?
  • Do actions have a duration?
  • Can several actions be taken concurrently, or is only one action possible at a time?
  • Is the objective of a plan to reach a designated goal state, or to maximize a reward function?
  • Is there only one agent or are there several agents? Are the agents cooperative or selfish? Do all of the agents construct their own plans separately, or are the plans constructed centrally for all agents?

The simplest possible planning problem, known as the Classical Planning Problem, is determined by:

  • a unique known initial state,
  • durationless actions,
  • deterministic actions,
  • which can be taken only one at a time,
  • and a single agent.

Since the initial state is known unambiguously, and all actions are deterministic, the state of the world after any sequence of actions can be accurately predicted, and the question of observability is irrelevant for classical planning.

Further, plans can be defined as sequences of actions, because it is always known in advance which actions will be needed.

With nondeterministic actions or other events outside the control of the agent, the possible executions form a tree, and plans have to determine the appropriate actions for every node of the tree.

Discrete-time Markov decision processes (MDP) are planning problems with:

  • durationless actions,
  • nondeterministic actions with probabilities,
  • full observability,
  • maximization of a reward function,
  • and a single agent.

When full observability is replaced by partial observability, planning corresponds to a partially observable Markov decision process (POMDP).

If there are more than one agent, we have multi-agent planning, which is closely related to game theory.

Domain independent planning

[edit]

In AI planning, planners typically input a domain model (a description of a set of possible actions which model the domain) as well as the specific problem to be solved specified by the initial state and goal, in contrast to those in which there is no input domain specified. Such planners are called "domain independent" to emphasize the fact that they can solve planning problems from a wide range of domains. Typical examples of domains are block-stacking, logistics, workflow management, and robot task planning. Hence a single domain-independent planner can be used to solve planning problems in all these various domains. On the other hand, a route planner is typical of a domain-specific planner.

Planning domain modelling languages

[edit]

The most commonly used languages for representing planning domains and specific planning problems, such as STRIPS and PDDL for Classical Planning, are based on state variables. Each possible state of the world is an assignment of values to the state variables, and actions determine how the values of the state variables change when that action is taken. Since a set of state variables induce a state space that has a size that is exponential in the set, planning, similarly to many other computational problems, suffers from the curse of dimensionality and the combinatorial explosion.

An alternative language for describing planning problems is that of hierarchical task networks, in which a set of tasks is given, and each task can be either realized by a primitive action or decomposed into a set of other tasks. This does not necessarily involve state variables, although in more realistic applications state variables simplify the description of task networks.

Algorithms for planning

[edit]

Classical planning

[edit]

Action model learning

[edit]

Creating domain models is difficult, takes a lot of time, and can easily lead to mistakes. To help with this, several methods have been developed to automatically learn full or partial domain models from given observations. [2] [3] [4]

Reduction to other problems

[edit]

Temporal planning

[edit]

Temporal planning can be solved with methods similar to classical planning. The main difference is, because of the possibility of several, temporally overlapping actions with a duration being taken concurrently, that the definition of a state has to include information about the current absolute time and how far the execution of each active action has proceeded. Further, in planning with rational or real time, the state space may be infinite, unlike in classical planning or planning with integer time. Temporal planning is closely related to scheduling problems when uncertainty is involved and can also be understood in terms of timed automata. The Simple Temporal Network with Uncertainty (STNU) is a scheduling problem which involves controllable actions, uncertain events and temporal constraints. Dynamic Controllability for such problems is a type of scheduling which requires a temporal planning strategy to activate controllable actions reactively as uncertain events are observed so that all constraints are guaranteed to be satisfied. [5]

Probabilistic planning

[edit]

Probabilistic planning can be solved with iterative methods such as value iteration and policy iteration, when the state space is sufficiently small. With partial observability, probabilistic planning is similarly solved with iterative methods, but using a representation of the value functions defined for the space of beliefs instead of states.

Preference-based planning

[edit]

In preference-based planning, the objective is not only to produce a plan but also to satisfy user-specified preferences. A difference to the more common reward-based planning, for example corresponding to MDPs, preferences don't necessarily have a precise numerical value.

Conditional planning

[edit]

Deterministic planning was introduced with the STRIPS planning system, which is a hierarchical planner. Action names are ordered in a sequence and this is a plan for the robot. Hierarchical planning can be compared with an automatic generated behavior tree.[6] The disadvantage is, that a normal behavior tree is not so expressive like a computer program. That means, the notation of a behavior graph contains action commands, but no loops or if-then-statements. Conditional planning overcomes the bottleneck and introduces an elaborated notation which is similar to a control flow, known from other programming languages like Pascal. It is very similar to program synthesis, which means a planner generates sourcecode which can be executed by an interpreter.[7]

An early example of a conditional planner is “Warplan-C” which was introduced in the mid 1970s.[8] What is the difference between a normal sequence and a complicated plan, which contains if-then-statements? It has to do with uncertainty at runtime of a plan. The idea is that a plan can react to sensor signals which are unknown for the planner. The planner generates two choices in advance. For example, if an object was detected, then action A is executed, if an object is missing, then action B is executed.[9] A major advantage of conditional planning is the ability to handle partial plans.[10] An agent is not forced to plan everything from start to finish but can divide the problem into chunks. This helps to reduce the state space and solves much more complex problems.

Contingency planning

[edit]

We speak of "contingent planning" when the environment is observable through sensors, which can be faulty. It is thus a situation where the planning agent acts under incomplete information. For a contingent planning problem, a plan is no longer a sequence of actions but a decision tree because each step of the plan is represented by a set of states rather than a single perfectly observable state, as in the case of classical planning.[11] The selected actions depend on the state of the system. For example, if it rains, the agent chooses to take the umbrella, and if it doesn't, they may choose not to take it.

Michael L. Littman showed in 1998 that with branching actions, the planning problem becomes EXPTIME-complete.[12][13] A particular case of contiguous planning is represented by FOND problems - for "fully-observable and non-deterministic". If the goal is specified in LTLf (linear time logic on finite trace) then the problem is always EXPTIME-complete[14] and 2EXPTIME-complete if the goal is specified with LDLf.

Conformant planning

[edit]

Conformant planning is when the agent is uncertain about the state of the system, and it cannot make any observations. The agent then has beliefs about the real world, but cannot verify them with sensing actions, for instance. These problems are solved by techniques similar to those of classical planning,[15][16] but where the state space is exponential in the size of the problem, because of the uncertainty about the current state. A solution for a conformant planning problem is a sequence of actions. Haslum and Jonsson have demonstrated that the problem of conformant planning is EXPSPACE-complete,[17] and 2EXPTIME-complete when the initial situation is uncertain, and there is non-determinism in the actions outcomes.[13]

Deployment of planning systems

[edit]

See also

[edit]
Lists

References

[edit]
  1. ^ Ghallab, Malik; Nau, Dana S.; Traverso, Paolo (2004), Automated Planning: Theory and Practice, Morgan Kaufmann, ISBN 1-55860-856-7, archived from the original on 2025-08-06, retrieved 2025-08-06
  2. ^ Callanan, Ethan and De Venezia, Rebecca and Armstrong, Victoria and Paredes, Alison and Chakraborti, Tathagata and Muise, Christian (2022). MACQ: A Holistic View of Model Acquisition Techniques (PDF). ICAPS Workshop on Knowledge Engineering for Planning and Scheduling (KEPS).{{cite conference}}: CS1 maint: multiple names: authors list (link)
  3. ^ Aineto, Diego and Jiménez Celorrio, Sergio and Onaindia, Eva (2019). "Learning action models with minimal observability". Artificial Intelligence. 275: 104–137. doi:10.1016/j.artint.2019.05.003. hdl:10251/144560.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Jiménez, Sergio and de la Rosa, Tomás and Fernández, Susana and Fernández, Fernando and Borrajo, Daniel (2012). "A review of machine learning for automated planning". The Knowledge Engineering Review. 27 (4): 433–467. doi:10.1017/S026988891200001X.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Vidal, Thierry (January 1999). "Handling contingency in temporal constraint networks: from consistency to controllabilities". Journal of Experimental & Theoretical Artificial Intelligence. 11 (1): 23--45. CiteSeerX 10.1.1.107.1065. doi:10.1080/095281399146607.
  6. ^ Neufeld, Xenija and Mostaghim, Sanaz and Sancho-Pradel, Dario and Brand, Sandy (2017). "Building a Planner: A Survey of Planning Systems Used in Commercial Video Games". IEEE Transactions on Games. IEEE.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Sanelli, Valerio and Cashmore, Michael and Magazzeni, Daniele and Iocchi, Luca (2017). Short-term human robot interaction through conditional planning and execution. Proc. of International Conference on Automated Planning and Scheduling (ICAPS). Archived from the original on 2025-08-06. Retrieved 2025-08-06.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  8. ^ Peot, Mark A and Smith, David E (1992). Conditional nonlinear planning (PDF). Artificial Intelligence Planning Systems. Elsevier. pp. 189–197.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  9. ^ Karlsson, Lars (2001). Conditional progressive planning under uncertainty. IJCAI. pp. 431–438.
  10. ^ Liu, Daphne Hao (2008). A survey of planning in intelligent agents: from externally motivated to internally motivated systems (Technical report). Technical Report TR-2008-936, Department of Computer Science, University of Rochester. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  11. ^ Alexandre Albore; Hector Palacios; Hector Geffner (2009). A Translation-Based Approach to Contingent Planning. International Joint Conference of Artificial Intelligence (IJCAI). Pasadena, CA: AAAI. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  12. ^ Littman, Michael L. (1997). Probabilistic Propositional Planning: Representations and Complexity. Fourteenth National Conference on Artificial Intelligence. MIT Press. pp. 748–754. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  13. ^ a b Jussi Rintanen (2004). Complexity of Planning with Partial Observability (PDF). Int. Conf. Automated Planning and Scheduling. AAAI. Archived (PDF) from the original on 2025-08-06. Retrieved 2025-08-06.
  14. ^ De Giacomo, Giuseppe; Rubin, Sasha (2018). Automata-Theoretic Foundations of FOND Planning for LTLf and LDLf Goals. IJCAI. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  15. ^ Palacios, Hector; Geffner, Hector (2009). "Compiling uncertainty away in conformant planning problems with bounded width". Journal of Artificial Intelligence Research. 35: 623–675. arXiv:1401.3468. doi:10.1613/jair.2708. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  16. ^ Albore, Alexandre; Ramírez, Miquel; Geffner, Hector (2011). Effective heuristics and belief tracking for planning with incomplete information. Twenty-First International Conference on Automated Planning and Scheduling (ICAPS). Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  17. ^ Haslum, Patrik; Jonsson, Peter (2000). Some Results on the Complexity of Planning with Incomplete Information. Lecture Notes in Computer Science. Vol. 1809. Springer Berlin Heidelberg. pp. 308–318. doi:10.1007/10720246_24. ISBN 9783540446576. conference: Recent Advances in AI Planning

Further reading

[edit]
[edit]
呕吐出血是什么原因 女人腰疼是什么原因引起的 夏花是什么意思 b-h是什么药 5月26号什么星座
粉瘤不切除有什么危害 什么是碳水化合物食物 女性腰疼是什么原因 遗精是什么原因引起的 秋天都有什么
色泽是什么意思 理疗和按摩有什么区别 空调变频和定频有什么区别 吃什么药可以减肥 为什么膝盖弯曲就疼痛
手指肿胀什么原因 38岁属什么 肝功能四项检查什么 尿道口有灼热感是什么原因 解酒吃什么水果
血压高不能吃什么hcv7jop7ns1r.cn 脚凉是什么原因hcv8jop5ns0r.cn 生蚝和牡蛎有什么区别hcv9jop4ns8r.cn 梦见旋风是什么预兆hcv8jop8ns9r.cn 什么是甲母痣hcv9jop1ns3r.cn
高丽参适合什么人吃hcv8jop3ns7r.cn 生理期为什么会腰疼xinjiangjialails.com 落枕挂什么科hcv9jop3ns2r.cn 那天离开你是什么歌hcv8jop3ns1r.cn 拔冗是什么意思hcv8jop0ns4r.cn
一什么耳朵填量词hcv9jop6ns5r.cn 妄念是什么意思hcv9jop2ns0r.cn 口缘字一半念什么hcv7jop4ns5r.cn 臭虫是什么hcv8jop3ns4r.cn 三月八号什么星座kuyehao.com
吃什么长内膜最快最有效zsyouku.com 衔接班是什么意思creativexi.com 湫是什么意思hcv8jop7ns1r.cn 痨病是什么病hcv8jop4ns9r.cn 顺钟向转位是什么意思hcv7jop7ns4r.cn
百度