空调有异味是什么原因| 程咬金是什么意思| 2月24日什么星座| 锌是什么颜色| 近亲为什么不能结婚| 想吃咸的是身体缺什么| 送孕妇什么礼物最贴心| 什么是宫颈纳囊| 细菌是什么| 吃什么油对心脑血管好| 美国为什么打朝鲜| 处女座属于什么星象| 炖排骨什么时候放盐最好| 浩瀚是什么意思| 什么是胆囊炎| 中气下陷吃什么药| 金什么| 子宫肌瘤吃什么能消除| 府绸是什么面料| 猫咪为什么害怕黄瓜| 胃肠道功能紊乱吃什么药| 亭亭净植是什么意思| 牙龈肿痛吃什么药最好| 什么是石女| 龟头炎什么症状| 提前吃什么喝酒不醉| 大男子主义的男人喜欢什么样的女人| 芙蓉花又叫什么花| 芦荟有什么作用| 营卫不和吃什么中成药| 舌头边缘有齿痕是什么原因| 口水臭是什么原因| pcr是什么| 关节由什么组成| 肚子疼挂什么科室| fwb什么意思| 肚脐眼下面痛什么原因| 胸推是什么意思| 丙型肝炎吃什么药最好| tba是什么意思| 9月3日是什么星座的| 裂纹舌是什么原因| 黑怕是什么意思| 艾灸是什么意思| 保育员是什么| 嗅觉失灵是什么原因| quest是什么车| 左肺上叶肺大泡是什么意思| 狮子座的幸运色是什么| 前列腺吃什么药效果好| 天珠是什么做的| 睡觉做梦多是什么原因| 随机血糖是什么意思| 主母是什么意思| 什么是血氧| 投诉护士找什么部门| 草字头加西读什么| 谷子是什么意思| 昕字取名什么寓意| 冰镇情人果是什么水果| 灰飞烟灭是什么意思| 毛片是什么| 89年属蛇是什么命| 百忧解是什么药| 丙氨酸氨基转移酶高是什么原因| 药流后需要注意什么| 什么是年金| 医学检验技术是什么| 天上的云像什么| 舌裂是什么原因造成的| 国资委主任是什么级别| 什么都不做| 头顶疼是什么原因| 金灿灿的什么| 巧囊是什么原因形成的| 小孩阑尾炎是由什么原因引起的| 经常眨眼睛是什么原因| 石本读什么| 角膜炎吃什么药| 考军校要什么条件| 什么大牌护肤品好用| 纸老虎比喻什么样的人| 梦见自己生男孩是什么意思| 绿字五行属什么| 吃什么能治白头发| 什么什么来迟| 12月1日是什么日子| 相与是什么意思| 尿里面有血是什么原因| 望闻问切什么意思| 半成品是什么意思| 头疼喝什么饮料| 嘴巴里长血泡是什么原因| 抱恙是什么意思| 水样便腹泻是什么引起| 什么的孩子| 脚掌发红是什么原因| 听字五行属什么| 女性更年期挂什么科| 重阳节为什么要插茱萸| ppt是什么意思| 平均红细胞体积偏高说明什么| 哥哥的女儿叫什么| 预谋是什么意思| 什么原因得疱疹| 11月26是什么星座| 10月11是什么星座| 脚气用什么| 什么是佛| 什么食物含铁量最高| 男人下巴有痣代表什么| 卡罗莱手表是什么档次| 心灵的洗礼是什么意思| 客家是什么意思| 什么叫稽留流产| 恶心想吐是什么原因| 为什么不要看电焊火花| 自强是什么意思| 尔加玉读什么| 下九流指的是什么| black什么颜色| 南音是什么意思| 经常呛咳是什么病的征兆| 梦见鬼是什么预兆| 文笔是什么意思| gia是什么意思| 女性失眠吃什么药最好| 什么的小姑娘| 尼泊尔人是什么人种| 做肌电图挂什么科| 出海什么意思| 七月十四是什么节| 山竹什么时候吃是应季| 男人小便刺痛吃什么药| 越描越黑是什么意思| 葡萄什么时候传入中国| 铁低的原因是什么| 发财树用什么肥料最好| 伤官是什么意思| 随餐服用是什么时候吃| 煨是什么意思| 查处是什么意思| 男士带什么手串好| 什么花好看| 黑手是什么意思| 大于90度的角是什么角| wuli是什么意思| 人才辈出是什么意思| 胎膜早破是什么原因引起的| 楼房风水主要看什么| 翠字五行属什么| 猫猴子是什么| 胃不好吃什么菜| 新生儿五行缺什么查询| 3月16日是什么星座| 趋利避害是什么意思| 冰雹是什么季节下的| 下巴脖子长痘痘是什么原因| 糖醋排骨用什么醋好吃| 马甲线是什么意思| 什么情况打破伤风| 促狭一笑是什么意思| 寒衣节是什么意思| 抱薪救火是什么意思| bg是什么| 床上放什么可以驱蟑螂| 1970年五行属什么| 备孕需要做什么| 食谱是什么意思| 阴茎进入阴道什么感觉| 1927年中国发生了什么| 晟字五行属什么| 荔枝都有什么品种| 拉姆藏语什么意思| 乐高为什么这么贵| 噗呲是什么意思| 肝素是什么| 运钞车是什么车| 怀孕吃什么好| 1979属什么生肖| 为什么睡觉老是流口水| 眼震电图能查什么病| 五月十一是什么星座| 香菇和什么不能一起吃| 1882年属什么生肖| 意什么风发| 比是什么| hbsag阴性是什么意思| 什么叫非萎缩性胃炎| 绝经一般在什么年龄| premier是什么牌子| 菊花可以和什么一起泡水喝| 不想睡觉是什么原因| 杓是什么意思| 心脏是由什么组织构成的| 章鱼的血是什么颜色| 61年属什么| 经常低血糖是什么原因| 黑壳虾吃什么食物| 乙肝吃什么药| 丹宁蓝是什么颜色| 解脲支原体阳性吃什么药最好| 36周岁属什么| 堪堪是什么意思| 梦见自己怀孕是什么意思| 心脏支架和搭桥有什么区别| 眼袋重是什么原因| 浮生如梦是什么意思| 吃什么睡眠好的最快最有效| 逼格是什么意思| 血脂高吃什么药好| 老九门讲的是什么故事| 诺如病毒吃什么药| 肠胃炎能吃什么食物| 59年属什么生肖| 喝醉是什么感觉| gl值是什么意思| 连云港有什么好吃的| 拔牙之前要注意什么| bmd是什么意思| 螺蛳粉有什么危害| 什么是割礼| 6.15是什么日子| 灵芝孢子粉治什么病| 龟头敏感用什么药| 东北有什么特产| 双甘油脂肪酸酯是什么| 什么人容易得梦游症| b27是什么检查| 清炖排骨汤放什么调料| 冬至是什么时候| 为什么新疆人不吃猪肉| 中性粒细胞比率偏低是什么意思| 阴道口瘙痒用什么药| 鼻炎用什么药效果好| 盐酸左氧氟沙星片治什么病| 精神焦虑症有什么表现有哪些| 红米有什么功效和作用| hpv疫苗是什么疫苗| 等不到天黑烟火不会太完美什么歌| 最高的山是什么山| 冰瓷棉是什么面料| 蓝加红是什么颜色| 梦见诈尸预示什么| 望闻问切的闻是什么意思| 为什么会手麻| 蝉属于什么类动物| 规培是什么| 护理专业出来能干什么| 润月是什么意思| 称呼是什么意思| 打更是什么意思| 什么的成长| 九月一日是什么星座| 小沈阳属什么生肖| 月经推后是什么原因| 检查肺部挂什么科室| 负离子有什么作用| 247是什么意思| 心脏缺血吃什么药| 昆仑玉什么颜色最贵| 任然什么意思| 子宫有积液是什么原因引起的| 维多利亚是什么意思| 百度Jump to content

《中国京剧音配像精粹》 20171013 京剧《穆桂英挂帅》 12

From Wikipedia, the free encyclopedia
(Redirected from Floor function)
百度 其中,5至10年的多次往返人才签证最快6个工作日免费办理完成,最长期限5年的工作许可最快5个工作日办理完成,在华永久居留证最快50个工作日办理完成。

Floor and ceiling functions
Floor function
Ceiling function

In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ?x? or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ?x? or ceil(x).[1]

For example, for floor: ?2.4? = 2, ??2.4? = ?3, and for ceiling: ?2.4? = 3, and ??2.4? = ?2.

The floor of x is also called the integral part, integer part, greatest integer, or entier of x, and was historically denoted [x] (among other notations).[2] However, the same term, integer part, is also used for truncation towards zero, which differs from the floor function for negative numbers.

For an integer n, ?n? = ?n? = n.

Although floor(x + 1) and ceil(x) produce graphs that appear exactly alike, they are not the same when the value of x is an exact integer. For example, when x = 2.0001, ?2.0001 + 1? = ?2.0001? = 3. However, if x = 2, then ?2 + 1? = 3, while ?2? = 2.

Examples
x Floor ?x? Ceiling ?x? Fractional part {x}
2 2 2 0
2.0001 2 3 0.0001
2.4 2 3 0.4
2.9 2 3 0.9
2.999 2 3 0.999
?2.7 ?3 ?2 0.3
?2 ?2 ?2 0

Notation

[edit]

The integral part or integer part of a number (partie entière in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula.

Carl Friedrich Gauss introduced the square bracket notation [x] in his third proof of quadratic reciprocity (1808).[3] This remained the standard[4] in mathematics until Kenneth E. Iverson introduced, in his 1962 book A Programming Language, the names "floor" and "ceiling" and the corresponding notations ?x? and ?x?.[5][6] (Iverson used square brackets for a different purpose, the Iverson bracket notation.) Both notations are now used in mathematics, although Iverson's notation will be followed in this article.

In some sources, boldface or double brackets ?x? are used for floor, and reversed brackets ?x? or ]x[ for ceiling.[7][8]

The fractional part is the sawtooth function, denoted by {x} for real x and defined by the formula

{x} = x ? ?x?[9]

For all x,

0 ≤ {x} < 1.

These characters are provided in Unicode:

  • U+2308 ? LEFT CEILING (&lceil;, &LeftCeiling;)
  • U+2309 ? RIGHT CEILING (&rceil;, &RightCeiling;)
  • U+230A ? LEFT FLOOR (&LeftFloor;, &lfloor;)
  • U+230B ? RIGHT FLOOR (&rfloor;, &RightFloor;)

In the LaTeX typesetting system, these symbols can be specified with the \lceil, \rceil, \lfloor, and \rfloor commands in math mode. LaTeX has supported UTF-8 since 2018, so the Unicode characters can now be used directly.[10] Larger versions are\left\lceil, \right\rceil, \left\lfloor, and \right\rfloor.

Definition and properties

[edit]

Given real numbers x and y, integers m and n and the set of integers , floor and ceiling may be defined by the equations

Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation

where  and  may also be taken as the definition of floor and ceiling.

Equivalences

[edit]

These formulas can be used to simplify expressions involving floors and ceilings.[11]

In the language of order theory, the floor function is a residuated mapping, that is, part of a Galois connection: it is the upper adjoint of the function that embeds the integers into the reals.

These formulas show how adding an integer n to the arguments affects the functions:

The above are never true if n is not an integer; however, for every x and y, the following inequalities hold:

Monotonicity

[edit]

Both floor and ceiling functions are monotonically non-decreasing functions:

Relations among the functions

[edit]

It is clear from the definitions that

with equality if and only if x is an integer, i.e.

In fact, for integers n, both floor and ceiling functions are the identity:

Negating the argument switches floor and ceiling and changes the sign:

and:

Negating the argument complements the fractional part:

The floor, ceiling, and fractional part functions are idempotent:

The result of nested floor or ceiling functions is the innermost function:

due to the identity property for integers.

Quotients

[edit]

If m and n are integers and n ≠ 0,

If n is positive[12]

If m is positive[13]

For m = 2 these imply

More generally,[14] for positive m (See Hermite's identity)

The following can be used to convert floors to ceilings and vice versa (with m being positive)[15]

For all m and n strictly positive integers:[16]

which, for positive and coprime m and n, reduces to

and similarly for the ceiling and fractional part functions (still for positive and coprime m and n),


Since the right-hand side of the general case is symmetrical in m and n, this implies that

More generally, if m and n are positive,

This is sometimes called a reciprocity law.[17]

Division by positive integers gives rise to an interesting and sometimes useful property. Assuming ,

Similarly,

Indeed,

keeping in mind that The second equivalence involving the ceiling function can be proved similarly.

Nested divisions

[edit]

For a positive integer n, and arbitrary real numbers m and x:[18]

Continuity and series expansions

[edit]

None of the functions discussed in this article are continuous, but all are piecewise linear: the functions , , and have discontinuities at the integers.

is upper semi-continuous and and are lower semi-continuous.

Since none of the functions discussed in this article are continuous, none of them have a power series expansion. Since floor and ceiling are not periodic, they do not have uniformly convergent Fourier series expansions. The fractional part function has Fourier series expansion[19] for x not an integer.

At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true value.

Using the formula gives for x not an integer.

Applications

[edit]

Mod operator

[edit]

For an integer x and a positive integer y, the modulo operation, denoted by x mod y, gives the value of the remainder when x is divided by y. This definition can be extended to real x and y, y ≠ 0, by the formula

Then it follows from the definition of floor function that this extended operation satisfies many natural properties. Notably, x mod y is always between 0 and y, i.e.,

if y is positive,

and if y is negative,

Quadratic reciprocity

[edit]

Gauss's third proof of quadratic reciprocity, as modified by Eisenstein, has two basic steps.[20][21]

Let p and q be distinct positive odd prime numbers, and let

First, Gauss's lemma is used to show that the Legendre symbols are given by

The second step is to use a geometric argument to show that

Combining these formulas gives quadratic reciprocity in the form

There are formulas that use floor to express the quadratic character of small numbers mod odd primes p:[22]

Rounding

[edit]

For an arbitrary real number , rounding to the nearest integer with tie breaking towards positive infinity is given by

rounding towards negative infinity is given as

If tie-breaking is away from 0, then the rounding function is

(where is the sign function), and rounding towards even can be expressed with the more cumbersome

which is the above expression for rounding towards positive infinity minus an integrality indicator for .

Rounding a real number to the nearest integer value forms a very basic type of quantizer – a uniform one. A typical (mid-tread) uniform quantizer with a quantization step size equal to some value can be expressed as

,

Number of digits

[edit]

The number of digits in base b of a positive integer k is

Number of strings without repeated characters

[edit]

The number of possible strings of arbitrary length that doesn't use any character twice is given by[23][better source needed]

where:

  • n > 0 is the number of letters in the alphabet (e.g., 26 in English)
  • the falling factorial denotes the number of strings of length k that don't use any character twice.
  • n! denotes the factorial of n
  • e = 2.718... is Euler's number

For n = 26, this comes out to 1096259850353149530222034277.

Factors of factorials

[edit]

Let n be a positive integer and p a positive prime number. The exponent of the highest power of p that divides n! is given by a version of Legendre's formula[24]

where is the way of writing n in base p. This is a finite sum, since the floors are zero when pk > n.

Beatty sequence

[edit]

The Beatty sequence shows how every positive irrational number gives rise to a partition of the natural numbers into two sequences via the floor function.[25]

Euler's constant (γ)

[edit]

There are formulas for Euler's constant γ = 0.57721 56649 ... that involve the floor and ceiling, e.g.[26]

and

Riemann zeta function (ζ)

[edit]

The fractional part function also shows up in integral representations of the Riemann zeta function. It is straightforward to prove (using integration by parts)[27] that if is any function with a continuous derivative in the closed interval [a, b],

Letting for real part of s greater than 1 and letting a and b be integers, and letting b approach infinity gives

This formula is valid for all s with real part greater than ?1, (except s = 1, where there is a pole) and combined with the Fourier expansion for {x} can be used to extend the zeta function to the entire complex plane and to prove its functional equation.[28]

For s = σ + it in the critical strip 0 < σ < 1,

In 1947 van der Pol used this representation to construct an analogue computer for finding roots of the zeta function.[29]

Formulas for prime numbers

[edit]

The floor function appears in several formulas characterizing prime numbers. For example, since it follows that a positive integer n is a prime if and only if[30]

One may also give formulas for producing the prime numbers. For example, let pn be the n-th prime, and for any integer r > 1, define the real number α by the sum

Then[31]

A similar result is that there is a number θ = 1.3064... (Mills' constant) with the property that

are all prime.[32]

There is also a number ω = 1.9287800... with the property that

are all prime.[32]

Let π(x) be the number of primes less than or equal to x. It is a straightforward deduction from Wilson's theorem that[33]

Also, if n ≥ 2,[34]

None of the formulas in this section are of any practical use.[35][36]

Solved problems

[edit]

Ramanujan submitted these problems to the Journal of the Indian Mathematical Society.[37]

If n is a positive integer, prove that

Some generalizations to the above floor function identities have been proven.[38]

Unsolved problem

[edit]

The study of Waring's problem has led to an unsolved problem:

Are there any positive integers k ≥ 6 such that[39]

Mahler has proved there can only be a finite number of such k; none are known.[40]

Computer implementations

[edit]
int function from floating-point conversion in C

In most programming languages, the simplest method to convert a floating point number to an integer does not do floor or ceiling, but truncation. The reason for this is historical, as the first machines used ones' complement and truncation was simpler to implement (floor is simpler in two's complement). FORTRAN was defined to require this behavior and thus almost all processors implement conversion this way. Some consider this to be an unfortunate historical design decision that has led to bugs handling negative offsets and graphics on the negative side of the origin.[citation needed]

An arithmetic right-shift of a signed integer by is the same as . Division by a power of 2 is often written as a right-shift, not for optimization as might be assumed, but because the floor of negative results is required. Assuming such shifts are "premature optimization" and replacing them with division can break software.[citation needed]

Many programming languages (including C, C++,[41][42] C#,[43][44] Java,[45][46] Julia,[47] PHP,[48][49] R,[50] and Python[51]) provide standard functions for floor and ceiling, usually called floor and ceil, or less commonly ceiling.[52] The language APL uses ?x for floor. The J Programming Language, a follow-on to APL that is designed to use standard keyboard symbols, uses <. for floor and >. for ceiling.[53] ALGOL usesentier for floor.

In Microsoft Excel the function INT rounds down rather than toward zero,[54] while FLOOR rounds toward zero, the opposite of what "int" and "floor" do in other languages. Since 2010 FLOOR has been changed to error if the number is negative.[55] The OpenDocument file format, as used by OpenOffice.org, Libreoffice and others, INT[56] and FLOOR both do floor, and FLOOR has a third argument to reproduce Excel's earlier behavior.[57]

See also

[edit]

Citations

[edit]
  1. ^ Graham, Knuth, & Patashnik, Ch. 3.1
  2. ^ 1) Luke Heaton, A Brief History of Mathematical Thought, 2015, ISBN 1472117158 (n.p.)
    2) Albert A. Blank et al., Calculus: Differential Calculus, 1968, p. 259
    3) John W. Warris, Horst Stocker, Handbook of mathematics and computational science, 1998, ISBN 0387947469, p. 151
  3. ^ Lemmermeyer, pp. 10, 23.
  4. ^ e.g. Cassels, Hardy & Wright, and Ribenboim use Gauss's notation. Graham, Knuth & Patashnik, and Crandall & Pomerance use Iverson's.
  5. ^ Iverson, p. 12.
  6. ^ Higham, p. 25.
  7. ^ Mathwords: Floor Function.
  8. ^ Mathwords: Ceiling Function
  9. ^ Graham, Knuth, & Patashnik, p. 70.
  10. ^ "LaTeX News, Issue 28" (PDF; 379 KB). The LaTeX Project. April 2018. Retrieved 27 July 2024.
  11. ^ Graham, Knuth, & Patashink, Ch. 3
  12. ^ Graham, Knuth, & Patashnik, p. 73
  13. ^ Graham, Knuth, & Patashnik, p. 85
  14. ^ Graham, Knuth, & Patashnik, p. 85 and Ex. 3.15
  15. ^ Graham, Knuth, & Patashnik, Ex. 3.12
  16. ^ Graham, Knuth, & Patashnik, p. 94.
  17. ^ Graham, Knuth, & Patashnik, p. 94
  18. ^ Graham, Knuth, & Patashnik, p. 71, apply theorem 3.10 with ?x/m? as input and the division by n as function
  19. ^ Titchmarsh, p. 15, Eq. 2.1.7
  20. ^ Lemmermeyer, § 1.4, Ex. 1.32–1.33
  21. ^ Hardy & Wright, §§ 6.11–6.13
  22. ^ Lemmermeyer, p. 25
  23. ^ OEIS sequence A000522 (Total number of arrangements of a set with n elements: a(n) = Sum_{k=0..n} n!/k!.) (See Formulas.)
  24. ^ Hardy & Wright, Th. 416
  25. ^ Graham, Knuth, & Patashnik, pp. 77–78
  26. ^ These formulas are from the Wikipedia article Euler's constant, which has many more.
  27. ^ Titchmarsh, p. 13
  28. ^ Titchmarsh, pp.14–15
  29. ^ Crandall & Pomerance, p. 391
  30. ^ Crandall & Pomerance, Ex. 1.3, p. 46. The infinite upper limit of the sum can be replaced with n. An equivalent condition is n > 1 is prime if and only if
  31. ^ Hardy & Wright, § 22.3
  32. ^ a b Ribenboim, p. 186
  33. ^ Ribenboim, p. 181
  34. ^ Crandall & Pomerance, Ex. 1.4, p. 46
  35. ^ Ribenboim, p. 180 says that "Despite the nil practical value of the formulas ... [they] may have some relevance to logicians who wish to understand clearly how various parts of arithmetic may be deduced from different axiomatzations ... "
  36. ^ Hardy & Wright, pp. 344—345 "Any one of these formulas (or any similar one) would attain a different status if the exact value of the number α ... could be expressed independently of the primes. There seems no likelihood of this, but it cannot be ruled out as entirely impossible."
  37. ^ Ramanujan, Question 723, Papers p. 332
  38. ^ Somu, Sai Teja; Kukla, Andrzej (2022). "On some generalizations to floor function identities of Ramanujan" (PDF). Integers. 22. arXiv:2109.03680.
  39. ^ Hardy & Wright, p. 337
  40. ^ Mahler, Kurt (1957). "On the fractional parts of the powers of a rational number II". Mathematika. 4 (2): 122–124. doi:10.1112/S0025579300001170.
  41. ^ "C++ reference of floor function". Retrieved 5 December 2010.
  42. ^ "C++ reference of ceil function". Retrieved 5 December 2010.
  43. ^ dotnet-bot. "Math.Floor Method (System)". docs.microsoft.com. Retrieved 28 November 2019.
  44. ^ dotnet-bot. "Math.Ceiling Method (System)". docs.microsoft.com. Retrieved 28 November 2019.
  45. ^ "Math (Java SE 9 & JDK 9 )". docs.oracle.com. Retrieved 20 November 2018.
  46. ^ "Math (Java SE 9 & JDK 9 )". docs.oracle.com. Retrieved 20 November 2018.
  47. ^ "Math (Julia v1.10)". docs.julialang.org/en/v1/. Retrieved 4 September 2024.
  48. ^ "PHP manual for ceil function". Retrieved 18 July 2013.
  49. ^ "PHP manual for floor function". Retrieved 18 July 2013.
  50. ^ "R: Rounding of Numbers".
  51. ^ "Python manual for math module". Retrieved 18 July 2013.
  52. ^ Sullivan, p. 86.
  53. ^ "Vocabulary". J Language. Retrieved 6 September 2011.
  54. ^ "INT function". Retrieved 29 October 2021.
  55. ^ "FLOOR function". Retrieved 29 October 2021.
  56. ^ "Documentation/How Tos/Calc: INT function". Retrieved 29 October 2021.
  57. ^ "Documentation/How Tos/Calc: FLOOR function". Retrieved 29 October 2021.

References

[edit]
[edit]
糯米粉可以做什么 04年的猴是什么命 阴虱用什么药物 75属什么生肖 姨妈疼吃什么止疼药
五脏主什么 梦见蛇和老鼠是什么意思 什么是爱情 怀孕周期是从什么时候开始算的 县公安局长什么级别
是对什么 有什么无什么 什么拼音怎么写 什么肥什么壮 江诗丹顿是什么档次
什么的黎明 树洞什么意思 双侧胸膜增厚是什么病 什么鸡没有毛 分解酒精的是什么酶
花椰菜是什么菜hcv9jop4ns5r.cn 美业是做什么的hcv8jop5ns4r.cn 手指头抽筋是什么原因hcv9jop2ns4r.cn 坐骨神经痛吃什么药好得快hcv8jop1ns2r.cn 什么病不能吃空心菜hcv8jop3ns9r.cn
欣是什么意思bysq.com 脂肪肝吃什么hcv9jop6ns1r.cn 什么是疝气hcv8jop8ns3r.cn 女人白带多什么原因hcv8jop3ns2r.cn 尿素酶阳性什么意思huizhijixie.com
什么样的花纹hcv8jop4ns3r.cn 猪古代叫什么hcv7jop5ns5r.cn 男人有美人尖代表什么hcv8jop5ns9r.cn 凯字五行属什么hcv8jop6ns7r.cn 尿道口痛什么原因hcv8jop4ns5r.cn
巨蟹是什么星座hcv9jop5ns0r.cn 海豚吃什么hcv7jop4ns6r.cn 胆囊壁固醇沉积是什么意思hcv9jop4ns8r.cn 失去抚养权意味着什么hcv9jop3ns8r.cn 男性夜间盗汗什么原因hcv8jop6ns1r.cn
百度