ganni是什么牌子| 肚子容易饿是什么原因| kw是什么单位| 小兔子吃什么食物| 生动是什么意思| 风属于五行属什么| lh是什么意思啊| 减肥能喝什么饮料| 孩子老打嗝是什么原因| 冬天有什么花| bata鞋属于什么档次| 贲临是什么意思| 睾酮素低了有什么症状| 不善言辞是什么意思| 糖尿病的人可以吃什么水果| 蒲瓜是什么瓜| 海藻糖是什么糖| 魅惑是什么意思| 子宫在肚脐眼什么位置| 1996年1月属什么生肖| 肠胃炎能吃什么水果| 睾丸炎吃什么药最有效| tpo是什么意思| 核磁共振和ct有什么区别| 今年属于什么年| 机械性窒息死亡是什么意思| 房产证和土地证有什么区别| 意大利用什么货币| 地笼捕河虾用什么诱饵| 植入是什么意思| 左右逢源是什么生肖| 老公生日送什么礼物好最合适| 强肉弱食是什么意思| 怕老婆的男人说明什么| 吃什么补阴虚最好| 吃什么药能让月经马上来| 吃什么食物可以降低胆固醇| 伪娘是什么意思| 白细胞低是什么原因引起的| 箬叶和粽叶有什么区别| 四个金读什么| 什么手机好用| rsa胎位是什么意思| 心律不齐吃什么药效果好| 女生有喉结是什么原因| 泌尿科主要看什么病| 糖尿病什么原因引起的| ca724偏高是什么意思| 豆腐有什么营养| 什么的寒冷| 头疼应该挂什么科| 狗什么东西不能吃| 中产阶级的标准是什么| 包干价是什么意思| 劝酒什么意思| 冬日暖阳是什么意思| alike是什么意思| 阴超是检查什么的| 胃息肉是什么症状| 为什么午觉睡醒后头疼| 11月14日什么星座| 人生最大的遗憾是什么| 牙疼是什么火引起的| 都有什么快递| 梦到自己牙齿掉了是什么意思| 相亲是什么意思| 上报是什么意思| 不食人间烟火是什么意思| 每天吃一个西红柿有什么好处| 木字旁的有什么字| 红馆是什么地方| 腿容易麻是什么原因| 景色什么| 红裤子配什么上衣| 现充什么意思| 无拘无束的意思是什么| 检查心脏挂什么科| 郑州机场叫什么名字| 放下身段是什么意思| 粘胶是什么面料| 什么病不能吃玉米| 包谷是什么意思| 命好的人都有什么特征| 局气是什么意思| 阿弥陀佛什么意思| 浒苔是什么| 从来不吃窝边草是什么生肖| 经典是什么意思| 西太后手表什么档次| 医生停诊是什么意思| 萎缩性胃炎是什么原因引起的| 刀伤用什么药愈合最快| 肾上腺素有什么用| 牛肉配什么菜包饺子好吃| 天气热吃什么好| 口苦口干是什么原因引起的| 六三年属什么生肖| 腰间盘突出压迫神经腿疼吃什么药| 脚浮肿是什么原因引起的| 结婚13年是什么婚| 黑户是什么| 女性更年期挂什么科| 2岁打什么疫苗| 发烧不退烧是什么原因| 三月阳春好风光是什么生肖| 喝酒后头晕是什么原因| 古人的婚礼在什么时间举行| 晕血是什么原因| 草莓印是什么意思| 什么叫真菌| 分水岭是什么意思| 京东plus是什么意思| 什么是跳蛋| 58什么意思| 头发定型用什么好| 县法院院长是什么级别| 身经百战是什么意思| 我要控制我自己是什么歌| 喜用神是什么| 下巴长痘痘是什么原因引起的| 碗莲什么时候开花| 高校新生是什么意思| 长得什么| 幽门螺旋杆菌用什么药治疗| 疏肝解郁是什么意思| 灵芝泡酒有什么功效| 罗汉果可以和什么一起泡水喝| 液基薄层细胞学检查是什么| 月经周期短是什么原因| 眼睛干涩用什么药| 成都市市长是什么级别| 双歧杆菌三联和四联有什么区别| 24小时动态脑电图能查出什么| 孕妇脚肿是什么原因引起的| 成何体统是什么意思| 卫冕冠军是什么意思| 心律不齐房颤吃什么药| 什么食用油最好最健康| 输卵管造影是什么意思| 渐冻症是什么| 痔疮属于什么科室| 尿素氮肌酐比值偏高是什么原因| hcg偏高是什么原因| 少将是什么级别| 这个表情是什么意思| 丁未五行属什么| 强制是什么意思| 拔罐黑紫色说明什么| 什么程度要做肾穿刺| 早上六点半是什么时辰| 哺乳期牙龈肿痛可以吃什么药| 什么时候种香菜| 坐飞机需要带什么证件| 什么是转基因| 肠胃感冒是什么症状| 蜂蜜对人体有什么好处和功效| 舟字五行属什么| 怕冷不怕热是什么体质| 许愿是什么意思| 六娃的能力是什么| 不靠谱是什么意思| 什么人容易得心肌炎| 囊肿是什么东西| 经常心慌是什么原因| 稷是什么意思| 杏花什么时候开| 巧妙是什么意思| 房性早搏吃什么药最好| 感冒有痰吃什么药| saba是什么药| 什么叫姑息治疗| 兰花是什么颜色| white是什么意思颜色| 种什么最赚钱| 硬脂酸镁是什么东西| 大四什么时候毕业| 胃反流有什么症状| 人类免疫缺陷病毒抗体是什么意思| 高尿酸血症是什么病| 圈层是什么意思| 幽门螺杆菌是一种什么病| 小猫打什么疫苗| 心里难受是什么原因| 关羽姓什么| 规则是什么意思| 印度属于什么亚| 什么水果是碱性的| 尿素氮偏低是什么意思| 脚气挂号应该挂什么科| 大姨妈来吃什么好| ip地址是什么意思| 猫癣传染人什么症状| 文心什么字| 照护保险是什么| 睡觉起来眼皮肿是什么原因| 爆菊花什么感觉| 臻字五行属什么的| 婆媳关系为什么难相处| 什么食物热量高| 私人订制什么意思| 咳嗽吃什么水果最好| 碘伏过敏是什么症状| 什么是褪黑素| 女人跑马是什么意思| 2022年是什么生肖年| 什么叫环比什么叫同比| 11月15日出生是什么星座| 豌豆黄是什么| 11月是什么星座| 纯磨玻璃结节是什么意思| 为什么三文鱼可以生吃| 督察是什么级别| 官方翻新机是什么意思| 气管炎吃什么药| 日生组成什么字| 神经酰胺是什么| 阿托品属于什么类药物| 受害者是什么意思| 来大姨妈能喝什么饮料| 姑爷是什么意思| 长白头发了吃什么才能把头发变黑| mt是什么缩写| 什么时候最容易受孕| laurel是什么牌子| 三天不打上房揭瓦的下一句是什么| 凤五行属性是什么| 半夜喉咙痒咳嗽是什么原因| 吃什么能消除囊肿| 手心发热吃什么药| 乳腺增生吃什么好| 石家庄古代叫什么名字| 多饮多尿可能是什么病| 元宵节干什么| 检查肝做什么检查| pci是什么意思| 荞麦和苦荞有什么区别| 小便黄是什么病症| 亮丽是什么意思| lee是什么牌子| 吃什么能提高免疫力| 叙字五行属什么| 为什么香蕉不能放冰箱| 不老莓是什么| 生日礼物送什么好| skp什么意思| 迅速的反义词是什么| 和亲是什么意思| 流产了有什么症状| 载体是什么意思| 金钱能买来什么但买不来什么| 转氨酶高吃什么药效果好| 毒瘤是什么意思| 什么情况下需要做活检| 谷草转氨酶偏低是什么原因| spao是什么牌子| 高血压适合做什么运动| 脑缺血有什么症状| 前列腺b超能检查出什么| 夜尿多吃什么药| 头一直疼是什么原因| 酒后头疼什么原因| 肠胃功能紊乱吃什么药| 左手指头麻木是什么原因| 冰箱买什么牌子的好| 百度Jump to content

提升中国标准是大势所趋

From Wikipedia, the free encyclopedia
(Redirected from Combinatorial optimisation)
A minimum spanning tree of a weighted planar graph. Finding a minimum spanning tree is a common problem involving combinatorial optimization.
百度 另一位大偶像黄磊曾经也是长发飘飘的阳光偶像,一双大眼睛迷倒许多少女粉丝,不过随着结婚生子,加上本身爱好研究餐饮做饭,黄磊老师在发胖的路上一发不可收拾,特别是近些年更是完全放弃了自己外在形象的要求,。

Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects,[1] where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead.

Combinatorial optimization is related to operations research, algorithm theory, and computational complexity theory. It has important applications in several fields, including artificial intelligence, machine learning, auction theory, software engineering, VLSI, applied mathematics and theoretical computer science.

Applications

[edit]

Basic applications of combinatorial optimization include, but are not limited to:

  • Logistics[2]
  • Supply chain optimization[3]
  • Developing the best airline network of spokes and destinations
  • Deciding which taxis in a fleet to route to pick up fares
  • Determining the optimal way to deliver packages
  • Allocating jobs to people optimally
  • Designing water distribution networks
  • Earth science problems (e.g. reservoir flow-rates)[4]

Methods

[edit]

There is a large amount of literature on polynomial-time algorithms for certain special classes of discrete optimization. A considerable amount of it is unified by the theory of linear programming. Some examples of combinatorial optimization problems that are covered by this framework are shortest paths and shortest-path trees, flows and circulations, spanning trees, matching, and matroid problems.

For NP-complete discrete optimization problems, current research literature includes the following topics:

  • polynomial-time exactly solvable special cases of the problem at hand (e.g. fixed-parameter tractable problems)
  • algorithms that perform well on "random" instances (e.g. for the traveling salesman problem)
  • approximation algorithms that run in polynomial time and find a solution that is close to optimal
  • parameterized approximation algorithms that run in FPT time and find a solution close to the optimum
  • solving real-world instances that arise in practice and do not necessarily exhibit the worst-case behavior of in NP-complete problems (e.g. real-world TSP instances with tens of thousands of nodes[5]).

Combinatorial optimization problems can be viewed as searching for the best element of some set of discrete items; therefore, in principle, any sort of search algorithm or metaheuristic can be used to solve them. Widely applicable approaches include branch-and-bound (an exact algorithm which can be stopped at any point in time to serve as heuristic), branch-and-cut (uses linear optimisation to generate bounds), dynamic programming (a recursive solution construction with limited search window) and tabu search (a greedy-type swapping algorithm). However, generic search algorithms are not guaranteed to find an optimal solution first, nor are they guaranteed to run quickly (in polynomial time). Since some discrete optimization problems are NP-complete, such as the traveling salesman (decision) problem,[6] this is expected unless P=NP.

For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure . For example, if there is a graph which contains vertices and , an optimization problem might be "find a path from to that uses the fewest edges". This problem might have an answer of, say, 4. A corresponding decision problem would be "is there a path from to that uses 10 or fewer edges?" This problem can be answered with a simple 'yes' or 'no'.

The field of approximation algorithms deals with algorithms to find near-optimal solutions to hard problems. The usual decision version is then an inadequate definition of the problem since it only specifies acceptable solutions. Even though we could introduce suitable decision problems, the problem is then more naturally characterized as an optimization problem.[7]

NP optimization problem

[edit]

An NP-optimization problem (NPO) is a combinatorial optimization problem with the following additional conditions.[8] Note that the below referred polynomials are functions of the size of the respective functions' inputs, not the size of some implicit set of input instances.

  • the size of every feasible solution is polynomially bounded in the size of the given instance ,
  • the languages and can be recognized in polynomial time, and
  • is polynomial-time computable.

This implies that the corresponding decision problem is in NP. In computer science, interesting optimization problems usually have the above properties and are therefore NPO problems. A problem is additionally called a P-optimization (PO) problem, if there exists an algorithm which finds optimal solutions in polynomial time. Often, when dealing with the class NPO, one is interested in optimization problems for which the decision versions are NP-complete. Note that hardness relations are always with respect to some reduction. Due to the connection between approximation algorithms and computational optimization problems, reductions which preserve approximation in some respect are for this subject preferred than the usual Turing and Karp reductions. An example of such a reduction would be L-reduction. For this reason, optimization problems with NP-complete decision versions are not necessarily called NPO-complete.[9]

NPO is divided into the following subclasses according to their approximability:[8]

  • NPO(I): Equals FPTAS. Contains the Knapsack problem.
  • NPO(II): Equals PTAS. Contains the Makespan scheduling problem.
  • NPO(III): The class of NPO problems that have polynomial-time algorithms which computes solutions with a cost at most c times the optimal cost (for minimization problems) or a cost at least of the optimal cost (for maximization problems). In Hromkovi?'s book[which?], excluded from this class are all NPO(II)-problems save if P=NP. Without the exclusion, equals APX. Contains MAX-SAT and metric TSP.
  • NPO(IV): The class of NPO problems with polynomial-time algorithms approximating the optimal solution by a ratio that is polynomial in a logarithm of the size of the input. In Hromkovi?'s book, all NPO(III)-problems are excluded from this class unless P=NP. Contains the set cover problem.
  • NPO(V): The class of NPO problems with polynomial-time algorithms approximating the optimal solution by a ratio bounded by some function on n. In Hromkovic's book, all NPO(IV)-problems are excluded from this class unless P=NP. Contains the TSP and clique problem.

An NPO problem is called polynomially bounded (PB) if, for every instance and for every solution , the measure is bounded by a polynomial function of the size of . The class NPOPB is the class of NPO problems that are polynomially-bounded.

Specific problems

[edit]
An optimal traveling salesman tour through Germany’s 15 largest cities. It is the shortest among the 43,589,145,600[10] possible tours that visit each city exactly once.

See also

[edit]

Notes

[edit]
  1. ^ Schrijver 2003, p. 1.
  2. ^ Sbihi, Abdelkader; Eglese, Richard W. (2007). "Combinatorial optimization and Green Logistics" (PDF). 4OR. 5 (2): 99–116. doi:10.1007/s10288-007-0047-3. S2CID 207070217. Archived (PDF) from the original on 2025-08-05. Retrieved 2025-08-05.
  3. ^ Eskandarpour, Majid; Dejax, Pierre; Miemczyk, Joe; Péton, Olivier (2015). "Sustainable supply chain network design: An optimization-oriented review" (PDF). Omega. 54: 11–32. doi:10.1016/j.omega.2015.01.006. Archived (PDF) from the original on 2025-08-05. Retrieved 2025-08-05.
  4. ^ Hobé, Alex; Vogler, Daniel; Seybold, Martin P.; Ebigbo, Anozie; Settgast, Randolph R.; Saar, Martin O. (2018). "Estimating fluid flow rates through fracture networks using combinatorial optimization". Advances in Water Resources. 122: 85–97. arXiv:1801.08321. Bibcode:2018AdWR..122...85H. doi:10.1016/j.advwatres.2018.10.002. S2CID 119476042. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  5. ^ Cook 2016.
  6. ^ "Approximation-TSP" (PDF). Archived (PDF) from the original on 2025-08-05. Retrieved 2025-08-05.
  7. ^ Ausiello, Giorgio; et al. (2003), Complexity and Approximation (Corrected ed.), Springer, ISBN 978-3-540-65431-5
  8. ^ a b Hromkovic, Juraj (2002), Algorithmics for Hard Problems, Texts in Theoretical Computer Science (2nd ed.), Springer, ISBN 978-3-540-44134-2
  9. ^ Kann, Viggo (1992), On the Approximability of NP-complete Optimization Problems, Royal Institute of Technology, Sweden, ISBN 91-7170-082-X
  10. ^ Take one city, and take all possible orders of the other 14 cities. Then divide by two because it does not matter in which direction in time they come after each other: 14!/2 = 43,589,145,600.

References

[edit]
  • Gerard Sierksma; Yori Zwols (2015). Linear and Integer Optimization: Theory and Practice. CRC Press. ISBN 978-1-498-71016-9.
[edit]
吃饭不规律会导致什么问题 女人阴唇发黑是什么原因 什么木头有香味 张少华什么时候去世的 苏醒是什么意思
腾字五行属什么 肺部磨玻璃结节需要注意什么 武五行属什么 魁拔4什么时候上映 什么人容易得心肌炎
1211是什么星座 月痨病是什么病 高铁上不能带什么东西 搬新家送什么礼物好 插入是什么感觉
ngu是什么意思 什么东西能加不能减 榅桲是什么水果 象是什么结构的字 桃园三结义是什么意思
谷子是什么意思0297y7.com 1d是什么意思hcv7jop9ns1r.cn 为什么新疆人长得像外国人aiwuzhiyu.com cts是什么意思hcv8jop4ns8r.cn 什么是海拔hkuteam.com
gucci是什么品牌hcv9jop0ns4r.cn 菩提手串有什么寓意hcv9jop4ns9r.cn 间接胆红素高是什么意思hcv9jop5ns9r.cn 安踏高端品牌叫什么hcv8jop8ns3r.cn 平时血压高突然变低什么原因helloaicloud.com
粉刺是什么hcv9jop3ns7r.cn 林黛玉和贾宝玉是什么关系hanqikai.com 桂林有什么好玩的hcv9jop3ns7r.cn 潜规则是什么hcv7jop6ns9r.cn 准生证是什么hcv9jop3ns8r.cn
孕妇梦见棺材是什么征兆hcv9jop3ns3r.cn 面部肌肉跳动是什么原因hcv8jop7ns2r.cn afp是什么传染病hcv7jop5ns1r.cn 黄褐斑是什么引起的hcv8jop0ns5r.cn 什么军官能天天回家住hcv9jop4ns4r.cn
百度