苯佐卡因是什么| 骨量减少是什么意思| 吉利丁片是什么| r13是什么牌子| 支气管炎挂什么科| min是什么| spiderking是什么牌子| 尿液浑浊是什么原因| 美国为什么那么强大| 2006属狗的五行缺什么| 眼珠子发黄是什么原因| 什么犹如什么造句| 什么动物怕热| 脖子长小肉粒是什么原因| 裂纹舌是什么原因| 射手座是什么象| 木命的人适合佩戴什么首饰| 如夫人是什么意思| 为什么会尿道感染| 为什么汤泡饭对胃不好| 酶是什么| 眉毛上长痘是什么原因| 二甲苯是什么| 处男是什么| 颌下淋巴结肿大吃什么药| hbv是什么意思| 膝盖疼痛用什么药| 什么叫柏拉图式的爱情| 什么是干股| 肌酐低有什么危害| 梦见摘瓜是什么意思啊| 腹泻吃什么| 梦见考试是什么预兆| 风湿是什么原因造成的| 五音不全是什么意思| 琪五行属什么| 什么叫高危行为| 阴道炎用什么洗| 什么是医保| 女生胸部什么时候停止发育| 元辰是什么意思| 什么是证件照| 脑梗能吃什么| 白虎什么意思| 他克莫司软膏治疗什么| 木耳和什么菜搭配好吃| 胃胀吃什么药好| 黄豆芽炒什么好吃| 端午节都吃什么菜好| 梅花什么时候开放| 什么拉车连蹦带跳歇后语| 对唔嗨住什么意思| 护肝片什么时候吃最好| 风湿病是什么引起的| 胃肠蠕动慢吃什么药| 派出所所长是什么级别| 堪称什么意思| 八月生日什么星座| 吃什么可以变白| 英雄是什么生肖| 下巴长痘痘什么原因| 发烧不能吃什么| 口炎是什么字| 小孩便秘有什么办法| 小腹痛男性什么原因| 摄入是什么意思| 眼睛无神呆滞什么原因| 异化是什么意思| 大红色配什么颜色好看| 吃大虾不能吃什么| 空调变频和定频有什么区别| 联合创始人是什么意思| 443是什么意思| 2022年是什么生肖年| 欲购从速什么意思| 肠癌吃什么好| 湿气是什么原因造成的| 肩周炎口服什么药最好| 请人帮忙用什么词| 盗汗是什么原因造成的| 空调除湿和制冷有什么区别| 兴奋是什么意思| 梦到被蛇咬是什么意思周公解梦| 萎缩性胃炎吃什么药最好| 夜间胃痛是什么原因| 大陆人去香港需要什么证件| 世界上最大的岛是什么岛| 手指发麻什么原因| 既视感是什么意思| 1835年属什么生肖| 咖啡对身体有什么危害| 扁桃体肿大是什么原因引起的| pmid是什么意思| 诟病是什么意思| 林丹用的什么球拍| 骨质欠规整是什么意思| 菠菜不能和什么食物一起吃| 木圣念什么| 断交社保有什么影响| 4.2什么星座| 嫌恶是什么意思| hb是什么意思医学| 夫妻少配无刑是什么意思| 春季感冒吃什么药| 备孕挂什么科| 1997年7月1日属什么生肖| 煮玉米加盐有什么好处| 爸爸的妈妈叫什么| 六月出生的是什么星座| 药剂师是做什么的| 芮字五行属什么| inr是什么意思医学| 甲减有什么症状表现| 足底筋膜炎吃什么药| 寸是什么单位| 什么规律| 病是什么结构| 子宫脱落有什么症状| 孵化基地是什么意思| 胃痛吃什么食物| 鸽子单眼伤风用什么药| 香皂和肥皂有什么区别| 腐女什么意思| 西瓜吃多了有什么坏处| 1987年什么命| 中医师承是什么意思| 小腹胀痛什么原因| 霉菌反复发作是什么原因| 红枣和灰枣有什么区别| 感冒发烧吃什么药| 卖酒需要办理什么证| 平痛新又叫什么| 系统性红斑狼疮挂什么科| touch什么意思| 支气管扩张是什么原因引起| 九二共识是什么| 许莫氏结节是什么意思| 西瓜像什么比喻句| bl和bg是什么意思| 报应是什么意思| 拉肚子低烧是什么原因| 长孙皇后叫什么名字| 妩媚是什么意思| 红色尿液是什么原因| 什么茶可以降血压| 为什么叫马桶| 凤梨和菠萝有什么区别| 红果是什么| 有什么可以快速止痒的方法| 意大利用什么货币| 眼带用什么方法消除| 授课是什么意思| 峰值是什么意思| 什么网站可以看三级片| 钢琴八级是什么水平| 男人交公粮什么意思| 尿培养是检查什么病| 1217是什么星座| 馊主意是什么意思| 震撼的意思是什么| 细菌性痢疾症状是什么| 小孩便秘吃什么通便快| 8月10号什么星座| 什么是飞蚊症| 67是什么意思| 翻什么越什么| 急功近利什么意思| kaiser是什么品牌| 小肠换气什么症状| 集体户口和个人户口有什么区别| 为什么小鸟站在电线上不会触电| 市政协秘书长是什么级别| 应激反应是什么意思| 公安局跟派出所有什么区别| 北京大栅栏有什么好玩的| socks是什么意思| 青鱼用什么饵料好钓| 男生适合养什么小型犬| 芼什么意思| 紫外线过敏用什么药膏| 多多关照是什么意思| 吃过敏药有什么副作用| 牙齿浮起来是什么原因| 飞机选座位什么位置好| 脑动脉硬化吃什么药| PA医学上是什么意思| 窗口是什么意思| 治疗风湿有什么好方法| 秦王是什么生肖| 过敏可以吃什么| 全套是什么意思| 脂浊是什么意思| 心包隐窝是什么意思| 清江鱼又叫什么鱼| 怀孕的脉搏和正常脉搏有什么区别| 膝盖发软无力是什么原因| 什么淀粉最好| 鬼斧神工是什么意思| 凝血酶时间是什么意思| 六月初三是什么星座| 本钱是什么意思| 小儿咳嗽吃什么药| 孕妇感冒了可以吃什么药| 什么地游泳| 吃什么能提高血压| 鸡蛋和什么不能一起吃| 沙僧的武器是什么| 绝代双骄是什么意思| 江西有什么好玩的景点| 什么叫有机| 全脂乳粉是什么| 桃子又什么又什么填空| 香菇吃多了有什么危害| 7月4号是什么星座| 人吃什么才能长胖| 离职原因写什么| 牙膏属于什么类商品| 为什么拼音| 卵巢囊性结构是什么| 调理肠胃吃什么好| 怀孕了梦见蛇是什么意思| 湿疹怎么治用什么药膏| 宫颈疼是什么原因| 总师是什么级别| 岐黄是什么意思| 尿频尿多是什么原因| 肝虚火旺吃什么中成药| 白醋和小苏打一起用起什么效果| 门昌念什么| 天然气是什么味道| 年轻人创业做什么好| 为什么来姨妈会拉肚子| 什么人容易得癌症| 特需门诊和专家门诊有什么区别| 奥硝唑和甲硝唑有什么区别| 吃黄体酮有什么副作用| 什么叫甲沟炎| 血糖高对身体有什么危害| 孕妇什么情况下打肝素| 鸿运当头什么意思| 血用什么能洗掉| 甲硝唑吃多了有什么危害| 占有欲强什么意思| 电解工是干什么的| 年轻人血压高是什么原因引起的| 做恐怖的梦预示着什么| 梦见打蛇是什么预兆| 鸡眼用什么药好| 与世隔绝的绝是什么意思| 肚子左下方是什么器官| 什么叫前列腺炎| 仰天长叹的意思是什么| pm是什么的缩写| 床上有横梁有什么害处| 玉树临风什么意思| 小孩咳嗽有痰吃什么药| 室早三联律是什么意思| 去港澳旅游需要什么证件| AC是胎儿的什么意思| 沙拉酱可以做什么美食| hz是什么意思| 成都人民公园有什么好玩的| 梦见大蛇是什么意思| 胃下垂是什么症状| 百度Jump to content

区四届政协2015年度优秀提案...

From Wikipedia, the free encyclopedia
百度 首个秋冬系列推出的新款PetiteMalle手袋以古董箱为灵感,将LouisVuitton经典的行李箱+monogram印花设计转换成petiteMalle迷你行李箱,又让奢华旅行风火了一把。

In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives. Newton's method requires the Jacobian matrix of all partial derivatives of a multivariate function when used to search for zeros or the Hessian matrix when used for finding extrema. Quasi-Newton methods, on the other hand, can be used when the Jacobian matrices or Hessian matrices are unavailable or are impractical to compute at every iteration.

Some iterative methods that reduce to Newton's method, such as sequential quadratic programming, may also be considered quasi-Newton methods.

Search for zeros: root finding

[edit]

Newton's method to find zeroes of a function of multiple variables is given by , where is the left inverse of the Jacobian matrix of evaluated for .

Strictly speaking, any method that replaces the exact Jacobian with an approximation is a quasi-Newton method.[1] For instance, the chord method (where is replaced by for all iterations) is a simple example. The methods given below for optimization refer to an important subclass of quasi-Newton methods, secant methods.[2]

Using methods developed to find extrema in order to find zeroes is not always a good idea, as the majority of the methods used to find extrema require that the matrix that is used is symmetrical. While this holds in the context of the search for extrema, it rarely holds when searching for zeroes. Broyden's "good" and "bad" methods are two methods commonly used to find extrema that can also be applied to find zeroes. Other methods that can be used are the column-updating method, the inverse column-updating method, the quasi-Newton least squares method and the quasi-Newton inverse least squares method.

More recently quasi-Newton methods have been applied to find the solution of multiple coupled systems of equations (e.g. fluid–structure interaction problems or interaction problems in physics). They allow the solution to be found by solving each constituent system separately (which is simpler than the global system) in a cyclic, iterative fashion until the solution of the global system is found.[2][3]

Search for extrema: optimization

[edit]

The search for a minimum or maximum of a scalar-valued function is closely related to the search for the zeroes of the gradient of that function. Therefore, quasi-Newton methods can be readily applied to find extrema of a function. In other words, if is the gradient of , then searching for the zeroes of the vector-valued function corresponds to the search for the extrema of the scalar-valued function ; the Jacobian of now becomes the Hessian of . The main difference is that the Hessian matrix is a symmetric matrix, unlike the Jacobian when searching for zeroes. Most quasi-Newton methods used in optimization exploit this symmetry.

In optimization, quasi-Newton methods (a special case of variable-metric methods) are algorithms for finding local maxima and minima of functions. Quasi-Newton methods for optimization are based on Newton's method to find the stationary points of a function, points where the gradient is 0. Newton's method assumes that the function can be locally approximated as a quadratic in the region around the optimum, and uses the first and second derivatives to find the stationary point. In higher dimensions, Newton's method uses the gradient and the Hessian matrix of second derivatives of the function to be minimized.

In quasi-Newton methods the Hessian matrix does not need to be computed. The Hessian is updated by analyzing successive gradient vectors instead. Quasi-Newton methods are a generalization of the secant method to find the root of the first derivative for multidimensional problems. In multiple dimensions the secant equation is under-determined, and quasi-Newton methods differ in how they constrain the solution, typically by adding a simple low-rank update to the current estimate of the Hessian.

The first quasi-Newton algorithm was proposed by William C. Davidon, a physicist working at Argonne National Laboratory. He developed the first quasi-Newton algorithm in 1959: the DFP updating formula, which was later popularized by Fletcher and Powell in 1963, but is rarely used today. The most common quasi-Newton algorithms are currently the SR1 formula (for "symmetric rank-one"), the BHHH method, the widespread BFGS method (suggested independently by Broyden, Fletcher, Goldfarb, and Shanno, in 1970), and its low-memory extension L-BFGS. The Broyden's class is a linear combination of the DFP and BFGS methods.

The SR1 formula does not guarantee the update matrix to maintain positive-definiteness and can be used for indefinite problems. The Broyden's method does not require the update matrix to be symmetric and is used to find the root of a general system of equations (rather than the gradient) by updating the Jacobian (rather than the Hessian).

One of the chief advantages of quasi-Newton methods over Newton's method is that the Hessian matrix (or, in the case of quasi-Newton methods, its approximation) does not need to be inverted. Newton's method, and its derivatives such as interior point methods, require the Hessian to be inverted, which is typically implemented by solving a system of linear equations and is often quite costly. In contrast, quasi-Newton methods usually generate an estimate of directly.

As in Newton's method, one uses a second-order approximation to find the minimum of a function . The Taylor series of around an iterate is

where () is the gradient, and an approximation to the Hessian matrix.[4] The gradient of this approximation (with respect to ) is

and setting this gradient to zero (which is the goal of optimization) provides the Newton step:

The Hessian approximation is chosen to satisfy

which is called the secant equation (the Taylor series of the gradient itself). In more than one dimension is underdetermined. In one dimension, solving for and applying the Newton's step with the updated value is equivalent to the secant method. The various quasi-Newton methods differ in their choice of the solution to the secant equation (in one dimension, all the variants are equivalent). Most methods (but with exceptions, such as Broyden's method) seek a symmetric solution (); furthermore, the variants listed below can be motivated by finding an update that is as close as possible to in some norm; that is, , where is some positive-definite matrix that defines the norm. An approximate initial value is often sufficient to achieve rapid convergence, although there is no general strategy to choose .[5] Note that should be positive-definite. The unknown is updated applying the Newton's step calculated using the current approximate Hessian matrix :

  • , with chosen to satisfy the Wolfe conditions;
  • ;
  • The gradient computed at the new point , and

is used to update the approximate Hessian , or directly its inverse using the Sherman–Morrison formula.

  • A key property of the BFGS and DFP updates is that if is positive-definite, and is chosen to satisfy the Wolfe conditions, then is also positive-definite.

The most popular update formulas are:

Method
BFGS
Broyden
Broyden family
DFP
SR1

Other methods are Pearson's method, McCormick's method, the Powell symmetric Broyden (PSB) method and Greenstadt's method.[2] These recursive low-rank matrix updates can also represented as an initial matrix plus a low-rank correction. This is the Compact quasi-Newton representation, which is particularly effective for constrained and/or large problems.

Relationship to matrix inversion

[edit]

When is a convex quadratic function with positive-definite Hessian , one would expect the matrices generated by a quasi-Newton method to converge to the inverse Hessian . This is indeed the case for the class of quasi-Newton methods based on least-change updates.[6]

Notable implementations

[edit]

Implementations of quasi-Newton methods are available in many programming languages.

Notable open source implementations include:

  • GNU Octave uses a form of BFGS in its fsolve function, with trust region extensions.
  • GNU Scientific Library implements the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
  • ALGLIB implements (L)BFGS in C++ and C#
  • R's optim general-purpose optimizer routine uses the BFGS method by using method="BFGS".[7]
  • Scipy.optimize has fmin_bfgs. In the SciPy extension to Python, the scipy.optimize.minimize function includes, among other methods, a BFGS implementation.[8]

Notable proprietary implementations include:

  • Mathematica includes quasi-Newton solvers.[9]
  • The NAG Library contains several routines[10] for minimizing or maximizing a function[11] which use quasi-Newton algorithms.
  • In MATLAB's Optimization Toolbox, the fminunc function uses (among other methods) the BFGS quasi-Newton method.[12] Many of the constrained methods of the Optimization toolbox use BFGS and the variant L-BFGS.[13]

See also

[edit]

References

[edit]
  1. ^ Broyden, C. G. (1972). "Quasi-Newton Methods". In Murray, W. (ed.). Numerical Methods for Unconstrained Optimization. London: Academic Press. pp. 87–106. ISBN 0-12-512250-0.
  2. ^ a b c Haelterman, Rob (2009). "Analytical study of the Least Squares Quasi-Newton method for interaction problems". PhD Thesis, Ghent University. Retrieved 2025-08-05.
  3. ^ Rob Haelterman; Dirk Van Eester; Daan Verleyen (2015). "Accelerating the solution of a physics model inside a tokamak using the (Inverse) Column Updating Method". Journal of Computational and Applied Mathematics. 279: 133–144. doi:10.1016/j.cam.2014.11.005.
  4. ^ "Introduction to Taylor's theorem for multivariable functions - Math Insight". mathinsight.org. Retrieved November 11, 2021.
  5. ^ Nocedal, Jorge; Wright, Stephen J. (2006). Numerical Optimization. New York: Springer. pp. 142. ISBN 0-387-98793-2.
  6. ^ Robert Mansel Gower; Peter Richtarik (2015). "Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms". arXiv:1602.01768 [math.NA].
  7. ^ "optim function - RDocumentation". www.rdocumentation.org. Retrieved 2025-08-05.
  8. ^ "Scipy.optimize.minimize — SciPy v1.7.1 Manual".
  9. ^ "Unconstrained Optimization: Methods for Local Minimization—Wolfram Language Documentation". reference.wolfram.com. Retrieved 2025-08-05.
  10. ^ The Numerical Algorithms Group. "Keyword Index: Quasi-Newton". NAG Library Manual, Mark 23. Retrieved 2025-08-05.
  11. ^ The Numerical Algorithms Group. "E04 – Minimizing or Maximizing a Function" (PDF). NAG Library Manual, Mark 23. Retrieved 2025-08-05.
  12. ^ "Find minimum of unconstrained multivariable function - MATLAB fminunc". Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  13. ^ "Constrained Nonlinear Optimization Algorithms - MATLAB & Simulink". www.mathworks.com. Retrieved 2025-08-05.

Further reading

[edit]
小孩肚子疼是什么原因引起的 晚上9点是什么时辰 鬼剃头是什么病 尿有臭味是什么原因 一直干咳是什么原因
淋球菌是什么 宫腔粘连带是什么意思 肾小球滤过率偏高说明什么 地藏王菩萨保佑什么 阑尾为什么会发炎
梦到自己怀孕是什么意思 感冒吃什么消炎药 甾体是什么意思 吃什么治拉肚子 食管炎有什么症状
cm是什么岗位 晚上看到黄鼠狼什么预兆 日本人为什么长寿 转铁蛋白阳性什么意思 什么是埋线减肥
血糖高的人能吃什么水果hcv9jop2ns7r.cn 米乳是什么huizhijixie.com 茶色尿液提示什么病hcv8jop7ns9r.cn 什么菜好消化hcv9jop3ns3r.cn 手心脚心热吃什么药hcv9jop1ns3r.cn
半联动是什么意思hcv8jop3ns3r.cn 打胶原蛋白针有什么副作用吗hcv8jop3ns4r.cn 梦见自己鞋子破了是什么意思hcv8jop0ns6r.cn 长期胃胀是什么原因fenrenren.com 阴沉木是什么木头hcv9jop1ns0r.cn
三星堆遗址在什么地方hcv9jop5ns8r.cn 牛油果吃了有什么好处hcv7jop7ns0r.cn 食管反流用什么药效果好hcv8jop1ns7r.cn 胃酸是什么原因造成的hcv8jop8ns7r.cn 单身贵族什么意思hcv8jop0ns7r.cn
鹅蛋炒香菜治什么病hcv7jop6ns5r.cn 心脏早搏吃什么药效果好hcv7jop9ns9r.cn 毛是什么意思hcv8jop7ns8r.cn 宫腔粘连有什么危害huizhijixie.com 舌头辣辣的是什么原因hcv7jop9ns7r.cn
百度