川崎病有什么症状| 创伤弧菌用什么抗生素| 经期头疼是什么原因怎么办| mdz0.2是什么药| 大运正官是什么意思| 抗心磷脂抗体是什么| 把妹是什么意思| 最新病毒感染什么症状| ber是什么意思| 12月29号是什么星座| 下面有异味用什么药| 真丝乔其纱是什么面料| 脑鸣吃什么药最有效| 老年人血压忽高忽低是什么原因| 天煞是什么意思| 夹腿综合症是什么| 蛋清加蜂蜜敷脸有什么好处| 宝诰是什么意思| 一什么嘴巴| ab血型和o型生的孩子是什么血型| 中药包煎是什么意思| 经常眩晕是什么原因| 吃豆腐什么意思| 血钾低会有什么症状| haccp是什么认证| 什么是黑茶| 肾盂是什么意思| 最大的荔枝是什么品种| 手指月牙白代表什么| 别车是什么意思| 胆囊炎不能吃什么食物| fla是什么牌子| 狐狸是什么动物| 什么方法可以让月经快点来| 什么时候跑步减肥效果最好| 大头菜又叫什么菜| gem是什么意思| 白细胞降低是什么原因| 牛肉什么馅的饺子好吃| 梦见肉是什么意思| 骨折和骨裂有什么区别| 如果你是什么就什么造句| 蕙质兰心什么意思| 浑身解数是什么意思| 天麻能治什么病| 满满的回忆什么意思| 妍字属于五行属什么| 外阴白斑是什么样子| 堪称什么意思| 生蚝有什么功效| 什么食物养胃| 一个虫一个圣读什么| 羡字五行属什么| 病毒的繁殖方式是什么| 鹏字五行属什么| 股票的量比是什么意思| 一月25号是什么星座| 86年属什么| 笨什么笨什么| 画蛇添足的寓意是什么| 什么是社会考生| 维生素c吃多了有什么危害| 天津五行属什么| 抗生素药对人体有什么危害| 主胰管不扩张是什么意思| 谭咏麟属什么生肖| mle是什么意思| 膻是什么意思| 乙型肝炎病毒表面抗体阳性是什么意思| 什么时候称体重最准确| 厅级是什么级别| 2020年是什么生肖| 大排畸和四维的区别是什么| 麸质是什么| 劫财代表什么| 耳闷耳堵是什么原因引起的| 知柏地黄丸治什么病| 什么方什么计| 尿管型偏高是什么原因| 新疆有什么水果| 早搏是什么原因引起的| 肝喜欢什么食物| 排尿困难吃什么药| 腹泻吃什么| 尿酸高会出现什么症状| 手掌有痣代表什么| 警察在古代叫什么| 什么是象形字| 胃气上逆是什么原因造成的| 怕痒的男人意味着什么| 心跳和心率有什么区别| 17岁属什么生肖| 每天坚持黄瓜敷脸有什么效果| 风口浪尖是什么意思| 世界上最软的东西是什么| 眼睛红血丝用什么眼药水| 加湿器用什么水比较好| 记忆是什么| 茉莉花茶属于什么茶| 吃什么能排结石| 六味地黄丸什么功效| 正月开什么花| 腿抽筋是什么原因| 女人下巴有痣代表什么| 博美犬吃什么狗粮最好| 一个句号是什么意思| fossil是什么牌子| 舌头发苦是什么原因造成的| 细菌性炎症用什么药| 风寒感冒吃什么消炎药| 什么叫安全期| 月光石五行属什么| 痰有腥臭味是什么原因| 气血两亏是什么意思| 炖排骨放什么调料| 9月24号是什么星座| 饭票是什么意思| 什么家庭不宜挂八骏图| 15点是什么时辰| 11月30号是什么星座| 情绪高涨是什么意思| 腰痛吃什么药好| 脑萎缩吃什么药最好| 中气下陷是什么意思| 白细胞和淋巴细胞偏高是什么原因| 乳糖不耐受是什么意思| 男人为什么离不开情人| 河南人喜欢吃什么菜| 宠物螃蟹吃什么| 舌头发白什么原因| 女人吃什么最补子宫| 为什么会心慌| 曹操为什么杀华佗| 什么钓鱼愿者上钩| acc是什么| 检测hpv挂什么科| 小资生活是什么意思| 中暑喝什么| 好五行属什么| 小拇指长痣代表什么| 医生属于什么编制| dsa检查是什么| 檀郎是什么意思| 健身rm是什么意思| 喝什么茶去湿气最好| 脱发看什么科| 肝血不足吃什么食补最快| 补钙最好的食物是什么| 梅毒是什么病| 船舷是什么意思| 取缔役什么意思| 深井冰是什么意思| 岁月不饶人是什么意思| 狗消化不良吃什么药| bpd是胎儿的什么意思| 龙珠是什么| 胸膜炎是什么病| 毛尖是什么茶| 21岁属什么| 后颈长痘痘是什么原因| 为什么坐久了屁股疼| 一直咳嗽是什么原因| 急性胃炎吃什么药| 007最新一部叫什么| 适得其反什么意思| 吃什么通便| 哈尔滨机场叫什么名字| 中期唐氏筛查查什么| 高净值什么意思| 社会很单纯复杂的是人是什么歌| 劫煞是什么意思| 吾矛之利的利什么意思| 孕妇不能吃什么食物| 惺惺相惜什么意思| 神经性梅毒有什么症状| la帽子是什么牌子| 狗狗感冒吃什么药| ber是什么意思| 四川代表什么生肖| 纯钛对人体有什么好处| 归脾丸什么时候吃效果最好| 为什么润月| 蛇五行属什么| 尿路感染不能吃什么东西| 首套房有什么优惠政策| 火加木是什么字| 鼻子红是什么原因| 做面包用什么面粉| 猫猴子是什么| 头发有点黄是什么原因| 扁桃体发炎吃什么药比较好| 什么药去湿气最好最快| 最近爆发什么病毒感染| 为什么腋窝老是出汗| 什么是心理学| geforce是什么牌子| 减少什么| 一天什么时候最热| 环切手术是什么| 乙型肝炎表面抗体高是什么意思| 土豆有什么营养价值| 为什么今年有两个6月| 什么乐器最好学| 辣椒蟹吃什么| 动物的耳朵有什么作用| 独美是什么意思| 陈晓和赵丽颖为什么分手| 甲钴胺片是治什么的| 健康证明需要检查什么| 男人爱出汗是什么原因| 什么叫贵妃镯| 隔阂是什么意思| 五福临门是什么意思| 珑字五行属什么| 压强是什么| 家属是什么意思| 女人梦见棺材是什么征兆| 岁月不饶人是什么意思| 漉是什么意思| 恩替卡韦片是什么药| 8月1日是什么星座| 才能是什么意思| 衣的部首是什么| 唇上有痣代表什么| 肾阴虚吃什么药| 阑尾炎不能吃什么食物| 执业药师什么时候报名| 什么是前鼻音和后鼻音| 煮玉米加盐有什么好处| 藿香正气水不能和什么药一起吃| rsv是什么病毒| 紧急避孕药吃了有什么副作用| 彰字五行属什么| 慢性浅表性胃炎是什么意思| 脱脂牛奶是什么意思| 办健康证要带什么证件| 糖尿病吃什么食物| 眼睛黄是什么原因| 大夫古代指什么| 心脏早搏什么症状| 天眼是什么意思| 前列腺钙化有什么症状| 纸醉金迷什么意思| 凉皮是什么做的| 固本培元什么意思| 妇科湿疹用什么药膏最有效| 妹妹是什么意思| hv是什么意思| 华侨是什么| 血压低头晕吃什么药| 11月6日什么星座| 嗓子疼吃什么消炎药| 医托是什么意思| 领英是什么| 什么是知青| 什么火灾不能用水扑灭| 无妄之灾什么意思| 酸枣仁配什么治疗失眠| 租赁费计入什么科目| 梦见妖魔鬼怪是什么意思| 涌泉穴在什么地方| llc是什么意思| rgp是什么| np是什么| 百度Jump to content

市民买房合同上写明产权过5 签完发现产权不过2

From Wikipedia, the free encyclopedia
百度 1982年他的长诗《血的再版》获中国时报文学推荐奖,同年诗集《时间之伤》获台湾的中山文艺创作奖,1986年复获吴三连文艺奖。

Data wrangling, sometimes referred to as data munging, is the process of transforming and mapping data from one "raw" data form into another format with the intent of making it more appropriate and valuable for a variety of downstream purposes such as analytics. The goal of data wrangling is to assure quality and useful data. Data analysts typically spend the majority of their time in the process of data wrangling compared to the actual analysis of the data.

The process of data wrangling may include further munging, data visualization, data aggregation, training a statistical model, as well as many other potential uses. Data wrangling typically follows a set of general steps which begin with extracting the data in a raw form from the data source, "munging" the raw data (e.g. sorting) or parsing the data into predefined data structures, and finally depositing the resulting content into a data sink for storage and future use.[1] It is closely aligned with the ETL process.

Background

[edit]

The "wrangler" non-technical term is often said to derive from work done by the United States Library of Congress's National Digital Information Infrastructure and Preservation Program (NDIIPP) and their program partner the Emory University Libraries based MetaArchive Partnership. The term "mung" has roots in munging as described in the Jargon File.[2] The term "data wrangler" was also suggested as the best analogy to describe someone working with data.[3]

One of the first mentions of data wrangling in a scientific context was by Donald Cline during the NASA/NOAA Cold Lands Processes Experiment.[4] Cline stated the data wranglers "coordinate the acquisition of the entire collection of the experiment data." Cline also specifies duties typically handled by a storage administrator for working with large amounts of data. This can occur in areas like major research projects and the making of films with a large amount of complex computer-generated imagery. In research, this involves both data transfer from research instrument to storage grid or storage facility as well as data manipulation for re-analysis via high-performance computing instruments or access via cyberinfrastructure-based digital libraries.

With the upcoming of artificial intelligence in data science it has become increasingly important for automation of data wrangling to have very strict checks and balances, which is why the munging process of data has not been automated by machine learning. Data munging requires more than just an automated solution, it requires knowledge of what information should be removed and artificial intelligence is not to the point of understanding such things.[5]

Connection to data mining

[edit]

Data wrangling is a superset of data mining and requires processes that some data mining uses, but not always. The process of data mining is to find patterns within large data sets, where data wrangling transforms data in order to deliver insights about that data. Even though data wrangling is a superset of data mining does not mean that data mining does not use it, there are many use cases for data wrangling in data mining. Data wrangling can benefit data mining by removing data that does not benefit the overall set, or is not formatted properly, which will yield better results for the overall data mining process.

An example of data mining that is closely related to data wrangling is ignoring data from a set that is not connected to the goal: say there is a data set related to the state of Texas and the goal is to get statistics on the residents of Houston, the data in the set related to the residents of Dallas is not useful to the overall set and can be removed before processing to improve the efficiency of the data mining process.

Benefits

[edit]

With an increase of raw data comes an increase in the amount of data that is not inherently useful, this increases time spent on cleaning and organizing data before it can be analyzed which is where data wrangling comes into play. The result of data wrangling can provide important metadata statistics for further insights about the data, it is important to ensure metadata is consistent otherwise it can cause roadblocks. Data wrangling allows analysts to analyze more complex data more quickly, achieve more accurate results, and because of this better decisions can be made. Many businesses have moved to data wrangling because of the success that it has brought.

Core ideas

[edit]
Turning messy data into useful statistics

The main steps in data wrangling are as follows:

  1. Data discovery

    This all-encompassing term describes how to understand your data. This is the first step to familiarize yourself with your data.

  2. Structuring
    The next step is to organize the data. Raw data is typically unorganized and much of it may not be useful for the end product. This step is important for easier computation and analysis in the later steps.
  3. Cleaning
    There are many different forms of cleaning data, for example one form of cleaning data is catching dates formatted in a different way and another form is removing outliers that will skew results and also formatting null values. This step is important in assuring the overall quality of the data.
  4. Enriching
    At this step determine whether or not additional data would benefit the data set that could be easily added.
  5. Validating
    This step is similar to structuring and cleaning. Use repetitive sequences of validation rules to assure data consistency as well as quality and security. An example of a validation rule is confirming the accuracy of fields via cross checking data.
  6. Publishing
    Prepare the data set for use downstream, which could include use for users or software. Be sure to document any steps and logic during wrangling.

These steps are an iterative process that should yield a clean and usable data set that can then be used for analysis. This process is tedious but rewarding as it allows analysts to get the information they need out of a large set of data that would otherwise be unreadable.

Starting data
Name Phone Birth date State
John, Smith 445-881-4478 August 12, 1989 Maine
Jennifer Tal +1-189-456-4513 11/12/1965 Tx
Gates, Bill (876)546-8165 June 15, 72 Kansas
Alan Fitch 5493156648 2-6-1985 Oh
Jacob Alan 156-4896 January 3 Alabama
Result
Name Phone Birth date State
John Smith 445-881-4478 2025-08-06 Maine
Jennifer Tal 189-456-4513 2025-08-06 Texas
Bill Gates 876-546-8165 2025-08-06 Kansas
Alan Fitch 549-315-6648 2025-08-06 Ohio

The result of using the data wrangling process on this small data set shows a significantly easier data set to read. All names are now formatted the same way, {first name last name}, phone numbers are also formatted the same way {area code-XXX-XXXX}, dates are formatted numerically {YYYY-mm-dd}, and states are no longer abbreviated. The entry for Jacob Alan did not have fully formed data (the area code on the phone number is missing and the birth date had no year), so it was discarded from the data set. Now that the resulting data set is cleaned and readable, it is ready to be either deployed or evaluated.

Typical use

[edit]

The data transformations are typically applied to distinct entities (e.g. fields, rows, columns, data values, etc.) within a data set, and could include such actions as extractions, parsing, joining, standardizing, augmenting, cleansing, consolidating, and filtering to create desired wrangling outputs that can be leveraged downstream.

The recipients could be individuals, such as data architects or data scientists who will investigate the data further, business users who will consume the data directly in reports, or systems that will further process the data and write it into targets such as data warehouses, data lakes, or downstream applications.

Modus operandi

[edit]

Depending on the amount and format of the incoming data, data wrangling has traditionally been performed manually (e.g. via spreadsheets such as Excel), tools like KNIME or via scripts in languages such as Python or SQL. R, a language often used in data mining and statistical data analysis, is now also sometimes used for data wrangling.[6] Data wranglers typically have skills sets within: R or Python, SQL, PHP, Scala, and more languages typically used for analyzing data.

Visual data wrangling systems were developed to make data wrangling accessible for non-programmers, and simpler for programmers. Some of these also include embedded AI recommenders and programming by example facilities to provide user assistance, and program synthesis techniques to autogenerate scalable dataflow code. Early prototypes of visual data wrangling tools include OpenRefine and the Stanford/Berkeley Wrangler research system;[7] the latter evolved into Trifacta.

Other terms for these processes have included data franchising,[8] data preparation, and data munging.

Example

[edit]

Given a set of data that contains information on medical patients your goal is to find correlation for a disease. Before you can start iterating through the data ensure that you have an understanding of the result, are you looking for patients who have the disease? Are there other diseases that can be the cause? Once an understanding of the outcome is achieved then the data wrangling process can begin.

Start by determining the structure of the outcome, what is important to understand the disease diagnosis.

Once a final structure is determined, clean the data by removing any data points that are not helpful or are malformed, this could include patients that have not been diagnosed with any disease.

After cleaning look at the data again, is there anything that can be added to the data set that is already known that would benefit it? An example could be most common diseases in the area, America and India are very different when it comes to most common diseases.

Now comes the validation step, determine validation rules for which data points need to be checked for validity, this could include date of birth or checking for specific diseases.

After the validation step the data should now be organized and prepared for either deployment or evaluation. This process can be beneficial for determining correlations for disease diagnosis as it will reduce the vast amount of data into something that can be easily analyzed for an accurate result.

See also

[edit]

References

[edit]
  1. ^ "What Is Data Munging?". Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  2. ^ "mung". Mung. Jargon File. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  3. ^ As coder is for code, X is for data Archived 2025-08-06 at the Wayback Machine, Open Knowledge Foundation blog post
  4. ^ Parsons, M. A.; Brodzik, M. J.; Rutter, N. J. (2004). "Data management for the Cold Land Processes Experiment: improving hydrological science". Hydrological Processes. 18 (18): 3637–3653. Bibcode:2004HyPr...18.3637P. doi:10.1002/hyp.5801. S2CID 129774847.
  5. ^ "What Is Data Wrangling? What are the steps in data wrangling?". Express Analytics. 2025-08-06. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  6. ^ Wickham, Hadley; Grolemund, Garrett (2016). "Chapter 9: Data Wrangling Introduction". R for data science : import, tidy, transform, visualize, and model data (First ed.). Sebastopol, CA: O'Reilly. ISBN 978-1491910399. Archived from the original on 2025-08-06. Retrieved 2025-08-06.
  7. ^ Kandel, Sean; Paepcke, Andreas (May 2011). "Wrangler: Interactive visual specification of data transformation scripts". Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 3363–3372. doi:10.1145/1978942.1979444. ISBN 978-1-4503-0228-9. S2CID 11133756.
  8. ^ What is Data Franchising? (2003 and 2017 IRI) Archived 2025-08-06 at the Wayback Machine
[edit]
老是肚子饿是什么原因 副司长是什么级别 立秋抓秋膘吃什么 右眼睛跳是什么预兆 三叉神经痛吃什么药效果最好
什么叫闰年 石斛花有什么功效 梦见好多葡萄是什么意思 降火喝什么茶 什么是阿尔茨海默症
早上醒来手麻是什么原因 白鹭吃什么 胸痛一阵一阵的痛什么原因 温煦是什么意思 短发女人吸引什么男人
冰箱为什么结冰 前白蛋白低是什么意思 什么时候有胎动 骨钙素是什么 刚怀孕吃什么水果对胎儿好
扁桃体肿大是什么原因引起的hcv9jop5ns0r.cn diamond是什么牌子hcv7jop7ns4r.cn 什么是七情六欲weuuu.com 为什么心里总想一个人hcv9jop1ns1r.cn 二拇指比大拇指长代表什么hcv9jop6ns4r.cn
小腿痒痒越挠越痒是什么原因hcv9jop5ns4r.cn 吃什么治失眠hcv8jop7ns8r.cn 心脏在什么位置图片hcv7jop9ns4r.cn 梦见家里发大水了是什么征兆hcv7jop6ns6r.cn 贲门松弛吃什么药hcv8jop0ns6r.cn
什么鬼大家都喜欢hcv8jop1ns9r.cn 临床医学是什么hcv7jop9ns8r.cn 女性睾酮高意味着什么xscnpatent.com 胃胀是什么原因导致的xjhesheng.com 2010属什么生肖hcv8jop2ns5r.cn
菩提萨婆诃是什么意思hcv8jop3ns3r.cn 乾元是什么意思hcv8jop7ns1r.cn 婚检都检查什么hcv9jop3ns1r.cn 暑假让孩子学点什么好hcv7jop5ns3r.cn 隐血阴性是什么意思gangsutong.com
百度