藩王是什么意思| 什么是肺腺瘤| 7月八号是什么星座| 养肝护肝吃什么食物| 心跳太慢吃什么药| 变蛋是什么| 尿频尿急吃什么药| 带状疱疹挂什么科| 办健康证要带什么证件| cartier什么牌子| 七星瓢虫吃什么| 女人气虚吃什么补最快| 来大姨妈吃什么水果| 补充镁有什么好处| 车船税是什么意思每年都交吗| 查心脏挂什么科| 头晕视力模糊是什么原因| 孔子的真名叫什么| 腱鞘炎是什么| 偏头疼是什么原因| 无菌性前列腺炎吃什么药效果好| 凯撒沙拉酱是什么口味| 灏读什么| 正骨有什么好处和坏处| 366是什么意思| 白色车里放什么摆件好| 者羽念什么| 268数字代表什么意思| 一什么凤冠| 血压下午高是什么原因| 四爱是什么| 荨麻疹不能吃什么食物| 64属什么| 什么东西助眠| 欧金金什么意思| 暗物质和暗能量是什么| 素颜霜是干什么用的| sd是什么意思| acd是什么意思| 血糖高能吃什么蔬菜| 慢性荨麻疹是什么症状| 1987年属什么生肖| glu是什么氨基酸| 12月20号是什么星座| 胰腺检查挂什么科| 舌质是什么| 平肝潜阳是什么意思| 红加绿等于什么颜色| 男人射的快是什么原因| 悲伤是什么意思| 腺病是什么意思| 排暖期出血是什么原因| 类风湿因子高吃什么药| 梦见别人送钱给我是什么意思| 377是什么| 大小脸去医院挂什么科| 红枣有什么功效和作用| 什么叫肺间质病变| 最高检检察长什么级别| 吃什么有助于排便| 低压偏高什么原因| 邯郸学步的寓意是什么| navigare是什么牌子| 霸屏是什么意思| 县宣传部长是什么级别| 子宫内膜薄有什么影响| vj是什么| 兰芝属于什么档次| 晚上7点是什么时辰| 白癜风的症状是什么| rag是什么意思| 军校出来是什么军衔| courvoisier是什么酒| cma检测是什么| 南京有什么好玩的地方| 割包皮有什么好处和坏处| 最好的烟是什么牌子| 光是什么意思| 什么水果含钾| 行政许可是什么意思| 母亲属虎孩子属什么好| 经期不能吃什么水果| 大脑供血不足吃什么药最好| 吃什么补记忆力最快| 嘛是什么意思| 特需病房是什么意思| 早搏应该吃什么药| 永加日念什么| 透析是什么病| 左进右出有什么讲究| 小雪是什么意思| 梦见蛇是什么意思| 糖尿病人喝什么茶最好| 肝囊肿是什么病| 7月28日什么星座| 汽车点火线圈坏了有什么症状| 做梦梦到老公出轨代表什么预兆| 耍宝是什么意思| 桑葚搭配什么泡水喝最好| 2015年是什么生肖| 邋遢是什么意思| 分心念什么| 太原为什么叫龙城| 牙疼喝什么药| 扁平足是什么| 开心的反义词是什么| 乳腺纤维瘤是什么原因引起的| 恐龙蛋是什么水果| 月经前几天是什么期| 3月19日什么星座| o是什么元素| 大便脂肪球是什么意思| 家里停电打什么电话| 遗精是什么原因引起的| 双肺呼吸音粗是什么意思| 8月份是什么季节| 酒后吃什么解酒最快| 黄金有什么用| 胃痛去药店买什么药| 女人手心热吃什么调理| 吃饭快的人是什么性格| 德国什么东西值得买| hd什么意思| 肝郁吃什么药| 树叶又什么又什么| 海丽汉森是什么档次| 手指尖疼是什么原因| 六味地黄丸的功效是什么| 追随是什么意思| 为什么白头发越来越多| 经常头昏是什么原因| 拔牙后吃什么| 女人为什么要少吃鳝鱼| 1996年属鼠五行属什么| 甲亢平时要注意什么| 月经来了喝红糖水有什么好处| 避孕药吃了有什么副作用| 天津为什么叫天津卫| 什么的怀抱| 天恩是什么意思| 阳痿吃什么好| 大便出血什么原因| 阴道炎吃什么消炎药| 什么是童子| 血虚风燥是什么意思| 在干什么| 静脉曲张是什么症状| 绣球花什么时候开花| 大人睡觉流口水是什么原因引起的| 推拿是什么| e2是什么意思| 湉字五行属什么| 背后长痘痘什么原因| 天煞是什么意思| 放屁多是什么原因呢| 胸部中间痛什么原因引起的| 一夜白头是什么原因| 放屁多吃什么药| 端字五行属什么| 什么是oa| 生男生女取决于什么| 九锡是什么意思| 肺结节吃什么食物好| 梦见怀孕流产是什么意思| 什么是本命年| 支原体感染用什么药| 10月1是什么星座| 牛肉不能和什么水果一起吃| 胃经常胀气是什么原因| 义子是什么意思| 腹部彩超能查出什么| 痔疮挂什么科室| 吃地瓜有什么好处| 槟榔长什么样| 性激素六项什么时候查| 阿达子是什么| 正月十八是什么星座| 党参长什么样子| 多巴胺是什么意思| 庚日是什么意思| 海东青是什么鸟| 布谷鸟什么时候叫| 米线是用什么做的| 1972年属什么生肖| 什么程度算节食减肥| 腿疼去医院挂什么科| 迎风流泪是什么原因| 77年五行属什么| 因数是什么意思| 女性分泌物像豆腐渣用什么药| 一月四号是什么星座| Valentino什么牌子| 为什么拉屎是绿色的| 黄金芽属于什么茶| 精液的主要成分是什么| 阳春三月是什么意思| 头脑胀痛什么原因| 最新奥特曼叫什么| mdt是什么| 女红是什么意思| 花荣的绰号是什么| 护理学是什么| XX是什么意思| 左眼皮老跳是什么原因| mv是什么单位| 副军级是什么级别| 抗宫炎片主要治什么| 猪跟什么生肖配对最好| 床上有横梁有什么害处| 女性漏尿吃什么药最好| 舌苔开裂是什么原因呢| 什么叫肝功能不全| 墨池为什么不爱柔嘉了| 吃地瓜叶有什么好处和坏处| 什么是我的| 显赫是什么意思| 痛风吃什么食物好得快| 掌纹多而乱代表什么| 牛油果核有什么用| 梦见朋友死了是什么意思| 跃字五行属什么| 凝固是什么意思| 一什么香蕉| 天王星是什么颜色| 666是什么意思| hrs是什么意思| 男女身份证号码有什么区分| 螺旋杆菌吃什么药| 炒菜用什么油好| 淡水鱼什么鱼最好吃| 吃什么提高免疫力| 元辰是什么意思| 拉姆是什么意思| 九月初五是什么星座| 龙的幸运色是什么颜色| 角膜炎用什么眼药水| 女人右眼跳是什么意思| 梦见洗鞋子是什么意思| 鳞状上皮炎症反应性改变是什么意思| 九月十号什么星座| beer是什么意思| 湿疹不能吃什么食物| 桃子吃多了有什么坏处| tr什么意思| 痣为什么会越来越多| 甲磺酸倍他司汀片治什么病| 降血糖吃什么药| 手抖是什么病的前兆| 疑神疑鬼是什么意思| 志五行属什么| 父亲节该送什么礼物| 挑什么| 心率低是什么原因| 什么叫辟谷| 什么是非萎缩性胃炎| 梦见打苍蝇是什么意思| 嘴发麻是什么原因引起的| 葡萄胎是什么| 小麦粉可以做什么吃的| 嗳腐吞酸是什么意思| 早晨起床手麻是什么原因| 嘴唇出血是什么原因| 万金油什么意思| 高粱是什么粮食| 百度Jump to content

lover是什么意思

From Wikipedia, the free encyclopedia
An example for a kernel- the linear operator transforms all points on the line to the zero point , thus they form the kernel for the linear operator
百度 作为祖国首都,北京得天独厚的地理位置以及运输渠道多元使得运费成本都相比其他城市而言会低一些,尤其对于汽车这种高流通的大件商品而言更是如此。

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain.[1] That is, given a linear map L : VW between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W,[2] or more symbolically:

Properties

[edit]
Kernel and image of a linear map L from V to W

The kernel of L is a linear subspace of the domain V.[3][2] In the linear map two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is,

From this, it follows by the first isomorphism theorem that the image of L is isomorphic to the quotient of V by the kernel: In the case where V is finite-dimensional, this implies the rank–nullity theorem: where the term rank refers to the dimension of the image of L, while nullity refers to the dimension of the kernel of L, [4] That is, so that the rank–nullity theorem can be restated as

When V is an inner product space, the quotient can be identified with the orthogonal complement in V of . This is the generalization to linear operators of the row space, or coimage, of a matrix.

Generalization to modules

[edit]

The notion of kernel also makes sense for homomorphisms of modules, which are generalizations of vector spaces where the scalars are elements of a ring, rather than a field. The domain of the mapping is a module, with the kernel constituting a submodule. Here, the concepts of rank and nullity do not necessarily apply.

In functional analysis

[edit]

If V and W are topological vector spaces such that W is finite-dimensional, then a linear operator L: VW is continuous if and only if the kernel of L is a closed subspace of V.

Representation as matrix multiplication

[edit]

Consider a linear map represented as a m × n matrix A with coefficients in a field K (typically or ), that is operating on column vectors x with n components over K. The kernel of this linear map is the set of solutions to the equation Ax = 0, where 0 is understood as the zero vector. The dimension of the kernel of A is called the nullity of A. In set-builder notation, The matrix equation is equivalent to a homogeneous system of linear equations: Thus the kernel of A is the same as the solution set to the above homogeneous equations.

Subspace properties

[edit]

The kernel of a m × n matrix A over a field K is a linear subspace of Kn. That is, the kernel of A, the set Null(A), has the following three properties:

  1. Null(A) always contains the zero vector, since A0 = 0.
  2. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.
  3. If x ∈ Null(A) and c is a scalar cK, then cx ∈ Null(A), since A(cx) = c(Ax) = c0 = 0.

The row space of a matrix

[edit]

The product Ax can be written in terms of the dot product of vectors as follows:

Here, a1, ... , am denote the rows of the matrix A. It follows that x is in the kernel of A, if and only if x is orthogonal (or perpendicular) to each of the row vectors of A (since orthogonality is defined as having a dot product of 0).

The row space, or coimage, of a matrix A is the span of the row vectors of A. By the above reasoning, the kernel of A is the orthogonal complement to the row space. That is, a vector x lies in the kernel of A, if and only if it is perpendicular to every vector in the row space of A.

The dimension of the row space of A is called the rank of A, and the dimension of the kernel of A is called the nullity of A. These quantities are related by the rank–nullity theorem[4]

Left null space

[edit]

The left null space, or cokernel, of a matrix A consists of all column vectors x such that xTA = 0T, where T denotes the transpose of a matrix. The left null space of A is the same as the kernel of AT. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

Nonhomogeneous systems of linear equations

[edit]

The kernel also plays a role in the solution to a nonhomogeneous system of linear equations: If u and v are two possible solutions to the above equation, then Thus, the difference of any two solutions to the equation Ax = b lies in the kernel of A.

It follows that any solution to the equation Ax = b can be expressed as the sum of a fixed solution v and an arbitrary element of the kernel. That is, the solution set to the equation Ax = b is Geometrically, this says that the solution set to Ax = b is the translation of the kernel of A by the vector v. See also Fredholm alternative and flat (geometry).

Illustration

[edit]

The following is a simple illustration of the computation of the kernel of a matrix (see § Computation by Gaussian elimination, below for methods better suited to more complex calculations). The illustration also touches on the row space and its relation to the kernel.

Consider the matrix The kernel of this matrix consists of all vectors (x, y, z) ∈ R3 for which which can be expressed as a homogeneous system of linear equations involving x, y, and z:

The same linear equations can also be written in matrix form as:

Through Gauss–Jordan elimination, the matrix can be reduced to:

Rewriting the matrix in equation form yields:

The elements of the kernel can be further expressed in parametric vector form, as follows:

Since c is a free variable ranging over all real numbers, this can be expressed equally well as: The kernel of A is precisely the solution set to these equations (in this case, a line through the origin in R3). Here, the vector (?1,?26,16)T constitutes a basis of the kernel of A. The nullity of A is therefore 1, as it is spanned by a single vector.

The following dot products are zero: which illustrates that vectors in the kernel of A are orthogonal to each of the row vectors of A.

These two (linearly independent) row vectors span the row space of A—a plane orthogonal to the vector (?1,?26,16)T.

With the rank 2 of A, the nullity 1 of A, and the dimension 3 of A, we have an illustration of the rank-nullity theorem.

Examples

[edit]
  • If L: RmRn, then the kernel of L is the solution set to a homogeneous system of linear equations. As in the above illustration, if L is the operator: then the kernel of L is the set of solutions to the equations
  • Let C[0,1] denote the vector space of all continuous real-valued functions on the interval [0,1], and define L: C[0,1] → R by the rule Then the kernel of L consists of all functions fC[0,1] for which f(0.3) = 0.
  • Let C(R) be the vector space of all infinitely differentiable functions RR, and let D: C(R) → C(R) be the differentiation operator: Then the kernel of D consists of all functions in C(R) whose derivatives are zero, i.e. the set of all constant functions.
  • Let R be the direct product of infinitely many copies of R, and let s: RR be the shift operator Then the kernel of s is the one-dimensional subspace consisting of all vectors (x1, 0, 0, 0, ...).
  • If V is an inner product space and W is a subspace, the kernel of the orthogonal projection VW is the orthogonal complement to W in V.

Computation by Gaussian elimination

[edit]

A basis of the kernel of a matrix may be computed by Gaussian elimination.

For this purpose, given an m × n matrix A, we construct first the row augmented matrix where I is the n × n identity matrix.

Computing its column echelon form by Gaussian elimination (or any other suitable method), we get a matrix A basis of the kernel of A consists in the non-zero columns of C such that the corresponding column of B is a zero column.

In fact, the computation may be stopped as soon as the upper matrix is in column echelon form: the remainder of the computation consists in changing the basis of the vector space generated by the columns whose upper part is zero.

For example, suppose that Then

Putting the upper part in column echelon form by column operations on the whole matrix gives

The last three columns of B are zero columns. Therefore, the three last vectors of C, are a basis of the kernel of A.

Proof that the method computes the kernel: Since column operations correspond to post-multiplication by invertible matrices, the fact that reduces to means that there exists an invertible matrix such that with in column echelon form. Thus , , and . A column vector belongs to the kernel of (that is ) if and only if where . As is in column echelon form, , if and only if the nonzero entries of correspond to the zero columns of . By multiplying by , one may deduce that this is the case if and only if is a linear combination of the corresponding columns of .

Numerical computation

[edit]

The problem of computing the kernel on a computer depends on the nature of the coefficients.

Exact coefficients

[edit]

If the coefficients of the matrix are exactly given numbers, the column echelon form of the matrix may be computed with Bareiss algorithm more efficiently than with Gaussian elimination. It is even more efficient to use modular arithmetic and Chinese remainder theorem, which reduces the problem to several similar ones over finite fields (this avoids the overhead induced by the non-linearity of the computational complexity of integer multiplication).[citation needed]

For coefficients in a finite field, Gaussian elimination works well, but for the large matrices that occur in cryptography and Gr?bner basis computation, better algorithms are known, which have roughly the same computational complexity, but are faster and behave better with modern computer hardware.[citation needed]

Floating point computation

[edit]

For matrices whose entries are floating-point numbers, the problem of computing the kernel makes sense only for matrices such that the number of rows is equal to their rank: because of the rounding errors, a floating-point matrix has almost always a full rank, even when it is an approximation of a matrix of a much smaller rank. Even for a full-rank matrix, it is possible to compute its kernel only if it is well conditioned, i.e. it has a low condition number.[5][citation needed]

Even for a well conditioned full rank matrix, Gaussian elimination does not behave correctly: it introduces rounding errors that are too large for getting a significant result. As the computation of the kernel of a matrix is a special instance of solving a homogeneous system of linear equations, the kernel may be computed with any of the various algorithms designed to solve homogeneous systems. A state of the art software for this purpose is the Lapack library.[citation needed]

See also

[edit]

Notes and references

[edit]
  1. ^ Weisstein, Eric W. "Kernel". mathworld.wolfram.com. Retrieved 2025-08-07.
  2. ^ a b "Kernel (Nullspace) | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2025-08-07.
  3. ^ Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in Lay 2005, Meyer 2001, and Strang's lectures.
  4. ^ a b Weisstein, Eric W. "Rank-Nullity Theorem". mathworld.wolfram.com. Retrieved 2025-08-07.
  5. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2025-08-07. Retrieved 2025-08-07.{{cite web}}: CS1 maint: archived copy as title (link)

Bibliography

[edit]
[edit]
菊花有什么作用 得逞是什么意思 偶发性房性早搏是什么意思 大林木是什么生肖 三月份是什么星座
柠檬泡水喝有什么功效 弯的直的什么意思 银五行属性是什么 梦见朋友死了是什么意思 岳飞属什么生肖
卷心菜是什么菜 鹿皮绒是什么面料 pid是什么 产前诊断是检查什么 精神什么满
天空什么的什么的 海纳百川什么意思 学子是什么意思 浆水是什么 什么样的伤口需要打破伤风
龟苓膏是什么做的hcv9jop2ns8r.cn 医生说忌生冷是指什么gysmod.com 牛仔裤配什么鞋好看hcv7jop7ns2r.cn 属兔适合佩戴什么饰品hcv8jop0ns0r.cn 处女座属于什么星象hcv8jop9ns8r.cn
6月2日什么星座hcv9jop4ns0r.cn 周瑜属什么生肖hcv8jop0ns5r.cn 梦见小女孩是什么预兆jingluanji.com 污垢是什么意思hcv8jop5ns9r.cn 筒子骨炖什么好吃hcv8jop9ns7r.cn
早上流鼻血是什么原因hcv8jop3ns2r.cn 釜底抽薪是什么计hcv7jop5ns0r.cn 牙齿松动吃什么药hcv8jop1ns1r.cn 淋巴结肿大吃什么药hcv9jop4ns2r.cn 知柏地黄丸对男性功能有什么帮助hcv8jop9ns4r.cn
四月十号是什么星座hcv8jop3ns2r.cn 微米是什么单位hcv8jop8ns9r.cn 什么而不cj623037.com 字读什么hcv7jop5ns3r.cn 花重锦官城的重是什么意思hcv8jop9ns0r.cn
百度