洗衣机脱水是什么意思| 贝塔是什么意思| 沦丧是什么意思| 为什么瘦不下来| ecom什么意思| 做梦梦到蜈蚣是什么意思| 红豆泥是什么意思| 口臭吃什么| 肩周炎吃什么药好| 阿司匹林和阿莫西林有什么区别| 特警属于什么编制| 难缠是什么意思| 双身什么意思| 乳头经常痒是什么原因| 眼睛痒用什么眼药水| 蝗虫吃什么| 火凤凰是什么意思| 动脉硬化吃什么| 如何查自己是什么命格| 眼皮肿挂什么科| 为什么刚小便完又有尿意| 四大神兽是什么动物| 蒲地蓝消炎片主治什么| 三七是什么意思| 官宣是什么意思| 吃什么除湿气| 什么是什么意思| 为什么经常长口腔溃疡| 缺钾最忌讳吃什么| 乙亥五行属什么| 阿托品属于什么类药物| 心脏早搏是怎么回事有什么危害| 挫是什么意思| 朱砂属于五行属什么| 日加西念什么| 为什么掉头发很厉害| 1866年属什么生肖| 撞车了打什么电话| hpv什么病| 高抬腿运动有什么好处| 常吃大蒜有什么好处| 走路不稳是什么原因| surprise什么意思| 梦见死去的亲人又活了是什么意思| 6.10号是什么星座| 吃什么去肝火效果最好| 熟的反义词是什么| BE是什么| 什么冰冰| 副词是什么| cr5是什么意思| 混合型高脂血症是什么意思| 7月15日是什么节| 什么叫痔疮| 小猫起什么名字好听| 肾挂什么科室| 40年什么婚| 靠腰是什么意思| 心态好是什么意思| 等闲识得东风面下一句是什么| 面瘫是什么原因引起的| 物有所值是什么意思| 蜜蜂飞进家里预示什么| 为什么耳屎是湿的| 卸磨杀驴是什么意思| 急性腹泻拉水吃什么药| 梦里梦到蛇有什么预兆| 官方翻新机是什么意思| 现在最好的避孕方法是什么| 凉粉是用什么做的| 载脂蛋白b高是什么原因| 甲亢能吃什么| 95511是什么号码| 感觉是什么意思| 肚脐的左边疼是什么原因| 尿潜血是什么病| 雪松香是什么味道| 天丝是什么材料| 全麦面包是什么意思| 圣代是什么| 大专什么专业好就业| 小人痣代表什么意思| msgm是什么品牌| 鲍鱼是什么| 血脂高会导致什么后果| 什么是呆账| 手指甲变黑是什么原因| 回复1是什么意思| 男人趴着睡觉说明什么| 熹字五行属什么| 结婚40年是什么婚| 蛋白酶是什么东西| 深化是什么意思| 头昏脑胀是什么原因| 特斯拉发明了什么| 12月31号什么星座| 背胀是什么原因| 尿隐血是什么原因引起的| 粿是什么意思| 最贵的金属是什么| 胆囊炎吃什么药效果最好| 三个七念什么| 国防部部长什么级别| 肺积水是什么病| 葵水是什么意思| 芝兰是什么意思| 妈妈的弟弟的老婆叫什么| 五月是什么生肖| 默契是什么意思| 肛检是检查什么| 浪琴表属于什么档次| ad什么时候吃最好| ppa是什么药| 男性囊肿是什么引起的| 国际章是什么意思| 心电轴重度左偏是什么意思| 淋巴癌是什么| 什么的青蛙| au750是什么材质| 二月十八是什么星座| 做梦梦见拉屎是什么意思| 凌晨一点是什么时辰| 什么情况需要查凝血| 头总出汗是什么原因| 内消瘰疬丸主治什么病| 经期血块多是什么原因| 入睡难是什么原因| 苔藓是什么植物| 屋里喷什么消毒最好| 败血症是什么| 博字属于五行属什么| 桃子有什么营养| 阴阳两虚用什么药| 本命年为什么要穿红色| 窦房结内游走性心律是什么意思| 红豆与赤小豆有什么区别| 7月24是什么星座| h1是什么意思| 胡子长的快是什么原因| 眼睑痉挛挂什么科| 为什么家里有蟑螂| 尿路感染吃什么药| 女性尿检能查出什么病| 四月十一日是什么星座| 心脏斑块是什么意思啊| 牙疼可以吃什么| 动物的尾巴有什么用处| 长期干咳无痰是什么原因引起的| 乳痈是什么病| 纹身纹什么招财好运| 小青柑属于什么茶| 给老师送花送什么花合适| 粒字五行属什么| 椎体楔形变是什么意思| 什么学习机好| 痢疾是什么病| 胸腺癌早期有什么症状| 腮腺炎吃什么食物| 1971年属什么| 小觑是什么意思| 什么的黄瓜| 什锦菜是什么菜| 半夜十二点是什么时辰| 尿酸高是什么原因引起的| 人体左边肋骨下疼是什么原因| 眼珠子疼是什么原因| 肾阴阳两虚吃什么| 木薯是什么东西| 太阳病是什么意思| 拉肚子去医院挂什么科| 2011年是什么生肖| 头发秃一块是什么原因| 梦到考试是什么意思| 把妹是什么意思| 什么的雪人| 狮子女喜欢什么样的男生| 癣用什么药| 2034年是什么年| 经常流眼泪是什么原因| 亮剑是什么意思| 酸角是什么| 脾胃不好有什么症状表现| 什么是绿茶女| 为什么洗澡后皮肤会痒| 右眼跳是什么兆头| fcm是什么意思| 湿疹用什么药最好| 假如时光倒流我能做什么| 上海有什么好玩的| 淋巴结反应性增生是什么意思| 1969属什么| 熬夜吃什么保健品| 一什么彩虹| 苋菜与什么食物相克| 凤尾是什么菜| 什么运动可以让孩子长高| 王牌是什么意思| 印度人属于什么人种| 减张缝合是什么意思| 晨尿泡沫多是什么原因| 醋酸生育酚是什么东西| 战区司令员是什么级别| 猪八戒的老婆叫什么| 整形什么医院好| 为什么嘴唇发紫| 25度天气穿什么衣服| 心得安又叫什么名| 失眠吃什么食物效果最好| 右眼跳什么意思| 血压太低有什么危害| 味美思是什么酒| 痔核是什么样子图片| 双子是什么意思| 大小周是什么意思| 梦见自己化妆是什么意思| 望闻问切的闻是什么意思| 空谷幽兰下一句是什么| 小孩肚子疼吃什么药好| 什么是负离子| 烂舌头是什么原因| 西汉与东汉有什么区别| 宫缩是什么原因引起的| 什么情况下挂疼痛科| 总是很困想睡觉是什么原因| 皮肤粗糙缺什么维生素| 肛门疼痛什么原因| 豚鼠吃什么食物| 米诺地尔搽剂和米诺地尔酊有什么区别| 看肺子要挂什么科| 双十一是什么节日| 肺火旺吃什么药| 切花是什么意思| 指甲变空是什么原因| mpv是什么意思| 发烧了吃什么药| 精液有血是什么原因| 男人硬不起来该吃什么药| 为什么锻炼后体重反而增加了| 办身份证需要带什么| 女人丹凤眼意味什么| 宫闱是什么意思| 房奴什么意思| 人工念什么字| 鹅蛋孕妇吃有什么好处| 七月一日是什么节日| 催供香是什么意思| 肌肉纤维化是什么意思| fe是什么元素| 水手是干什么的| 黄体破裂是什么| 什么居什么业| 内啡肽是什么意思| 胎盘血窦是什么意思| 手肿胀是什么原因| 流浓黄鼻涕是什么原因| 肾b超能检查出什么| 马刺是什么| 荪是什么意思| 什么样的智齿不需要拔| 什么是铅中毒| com什么意思| 硫磺是什么| 囊性占位是什么意思| 一月25号是什么星座| 百度Jump to content

From Wikipedia, the free encyclopedia
Learning curve of the production of B-29 airframes at the Boeing Wichita division during WWII
An example of a subject becoming more proficient at a task as they spend more time doing it. In this example, proficiency increases rapidly at first but at later stages there are diminishing returns.
An example of what the common (yet confusing) expression "steep learning curve" is referring to. The subject spends a great amount of time but does not see an increase in proficiency at first.
百度 现在,鲁家村从原来负债150万到现在集体资产个亿,村民人均收入达到35600元。

A learning curve is a graphical representation of the relationship between how proficient people are at a task and the amount of experience they have. Proficiency (measured on the vertical axis) usually increases with increased experience (the horizontal axis), that is to say, the more someone, groups, companies or industries perform a task, the better their performance at the task.[1]

The common expression "a steep learning curve" is a misnomer suggesting that an activity is difficult to learn and that expending much effort does not increase proficiency by much, although a learning curve with a steep start actually represents rapid progress.[2][3] In fact, the gradient of the curve has nothing to do with the overall difficulty of an activity, but expresses the expected rate of change of learning speed over time. An activity that it is easy to learn the basics of, but difficult to gain proficiency in, may be described as having "a steep learning curve".[citation needed]

The learning curve may refer to a specific task or a body of knowledge. Hermann Ebbinghaus first described the learning curve in 1885 in the field of the psychology of learning, although the name did not come into use until 1903.[4][5] In 1936 Theodore Paul Wright described the effect of learning on production costs in the aircraft industry.[6] This form, in which unit cost is plotted against total production, is sometimes called an experience curve, or Wright's law.

In psychology

[edit]
Figure 2 from Ebbinghaus' über das Ged?chtnis. Ebbinghaus ran a series of 92 tests. In each test, he gave the subject 8 blocks of 13 random syllables each, and plotted the average time taken for the subject to memorize the block.
Figure 4 from über das Ged?chtnis. The same test with 9 blocks of 12 syllables each. This shows an oscillating pattern.

Hermann Ebbinghaus' memory tests, published in 1885, involved memorizing series of nonsense syllables, and recording the success over a number of trials. The translation does not use the term 'learning curve' — but he presents diagrams of learning against trial number. He also notes that the score can decrease, or even oscillate.[4][3][7]

The first known use of the term 'learning curve' is from 1903: "Bryan and Harter (6) found in their study of the acquisition of the telegraphic language a learning curve which had the rapid rise at the beginning followed by a period of slower learning, and was thus convex to the vertical axis."[5][3]

Psychologist Arthur Bills gave a more detailed description of learning curves in 1934. He also discussed the properties of different types of learning curves, such as negative acceleration, positive acceleration, plateaus, and ogive curves.[8]

In economics

[edit]

History

[edit]

In 1936, Theodore Paul Wright described the effect of learning on production costs in the aircraft industry and proposed a mathematical model of the learning curve.[6]

In 1952, the US Air Force published data on the learning curve in the airframe industry from 1940 to mid-1945.[9] Specifically, they tabulated and plotted the direct man-hour cost of various products as a function of cumulative production. This formed the basis of many studies on learning curves in the 1950s.[10]

In 1968 Bruce Henderson of the Boston Consulting Group (BCG) generalized the Unit Cost model pioneered by Wright, and specifically used a Power Law, which is sometimes called Henderson's Law.[11] He named this particular version the experience curve.[12][13] Research by BCG in the 1970s observed experience curve effects for various industries that ranged from 10 to 25 percent.[14]

Models

[edit]
The main learning curve models on a log-log plot. Wright, Plateau, Stanford-B, DeJong, S-curve.

The main statistical models for learning curves are as follows:[15][16]

  • Wright's model ("log-linear"): , where
    • is the cost of the -th unit,
    • is the total number of units made,
    • is the cost of the first unit made,
    • is the exponent measuring the strength of learning.
  • Plateau model: , where models the minimal cost achievable. In other words, the learning ceases after cost reaches a sufficiently low level.
  • Stanford-B model: , where models worker's prior experience.
  • DeJong's model: , where models the fraction of production done by machines (assumed to be unable to learn, unlike a human worker).
  • S-curve model: , a combination of Stanford-B model and DeJong's model.

The key variable is the exponent measuring the strength of learning. It is usually expressed as , where is the "learning rate". In words, it means that the unit cost decreases by , for every doubling of total units made. Wright found that in aircraft manufacturing, meaning that the unit cost decreases by 20% for every doubling of total units made.

Applications

[edit]

The economic learning of productivity and efficiency generally follows the same kinds of experience curves and have interesting secondary effects. Efficiency and productivity improvement can be considered as whole organization or industry or economy learning processes, as well as for individuals. The general pattern is of first speeding up and then slowing down, as the practically achievable level of methodology improvement is reached. The effect of reducing local effort and resource use by learning improved methods often has the opposite latent effect on the next larger scale system, by facilitating its expansion, or economic growth, as discussed in the Jevons paradox in the 1880s and updated in the Khazzoom–Brookes Postulate in the 1980s.

A comprehensive understanding of the application of learning curve on managerial economics would provide plenty of benefits on strategic level. People could predict the appropriate timing of the introductions for new products and offering competitive pricing decisions, deciding investment levels by stimulate innovations on products and the selection of organizational design structures.[17] Balachander and Srinivasan used to study a durable product and its pricing strategy on the principles of the learning curve. Based on the concepts that the growing experience in producing and selling a product would cause the decline of unit production cost, they found the potential best introductory price for this product.[18] As for the problems of production management under the limitation of scarce resources, Liao [19] observed that without including the effects of the learning curve on labor hours and machines hours, people might make incorrect managerial decisions. Demeester and Qi [20] used the learning curve to study the transition between the old products' eliminating and new products' introduction. Their results indicated that the optimal switching time is determined by the characteristics of product and process, market factors, and the features of learning curve on this production. Konstantaras, Skouri, and Jaber [21] applied the learning curve on demand forecasting and the economic order quantity. They found that the buyers obey to a learning curve, and this result is useful for decision-making on inventory management.

Learning curves have been used to model Moore's law in the semiconductor industry.[22]

When wages are proportional to number of products made, workers may resist changing to a different post or having a new member on the team, since it would temporarily decrease productivity. Learning curves has been used to adjust for temporary dips so that workers are paid more for the same product while they are learning.[15]

Examples and mathematical modeling

[edit]

A learning curve is a plot of proxy measures for implied learning (proficiency or progression toward a limit) with experience.

  • The horizontal axis represents experience either directly as time (clock time, or the time spent on the activity), or can be related to time (a number of trials, or the total number of units produced).
  • The vertical axis is a measure representing 'learning' or 'proficiency' or other proxy for "efficiency" or "productivity". It can either be increasing (for example, the score in a test), or decreasing (the time to complete a test).

For the performance of one person in a series of trials the curve can be erratic, with proficiency increasing, decreasing or leveling out in a plateau.

When the results of a large number of individual trials are averaged then a smooth curve results, which can often be described with a mathematical function.

Several main functions have been used:[23][24][25]

  • The S-Curve or Sigmoid function is the idealized general form of all learning curves, with slowly accumulating small steps at first followed by larger steps and then successively smaller ones later, as the learning activity reaches its limit. That idealizes the normal progression from discovery of something to learn about followed to the limit of learning about it. The other shapes of learning curves (4, 5 & 6) show segments of S-curves without their full extents. In this case the improvement of proficiency starts slowly, then increases rapidly, and finally levels off.
  • Exponential growth; the proficiency can increase without limit, as in Exponential growth
  • Exponential rise or fall to a Limit; proficiency can exponentially approach a limit in a manner similar to that in which a capacitor charges or discharges (exponential decay) through a resistor. The increase in skill or retention of information may increase rapidly to its maximum rate during the initial attempts, and then gradually levels out, meaning that the subject's skill does not improve much with each later repetition, with less new knowledge gained over time.
  • Power law; similar in appearance to an exponential decay function, and is almost always used for a decreasing performance metric, such as cost. It also has the property that if plotted as the logarithm of proficiency against the logarithm of experience the result is a straight line, and it is often presented that way.

The specific case of a plot of Unit Cost versus Total Production with a power law was named the experience curve: the mathematical function is sometimes called Henderson's Law. This form of learning curve is used extensively in industry for cost projections.[26]

In machine learning

[edit]

Plots relating performance to experience are widely used in machine learning. Performance is the error rate or accuracy of the learning system, while experience may be the number of training examples used for learning or the number of iterations used in optimizing the system model parameters.[27] The machine learning curve is useful for many purposes including comparing different algorithms,[28] choosing model parameters during design,[29] adjusting optimization to improve convergence, and determining the amount of data used for training.[30]

Broader interpretations

[edit]

Initially introduced in educational and behavioral psychology, the term has acquired a broader interpretation over time, and expressions such as "experience curve", "improvement curve", "cost improvement curve", "progress curve", "progress function", "startup curve", and "efficiency curve" are often used interchangeably. In economics the subject is rates of "development", as development refers to a whole system learning process with varying rates of progression. Generally speaking all learning displays incremental change over time, but describes an "S" curve which has different appearances depending on the time scale of observation. It has now also become associated with the evolutionary theory of punctuated equilibrium and other kinds of revolutionary change in complex systems generally, relating to innovation, organizational behavior and the management of group learning, among other fields.[31] These processes of rapidly emerging new form appear to take place by complex learning within the systems themselves, which when observable, display curves of changing rates that accelerate and decelerate.

General learning limits

[edit]

Learning curves, also called experience curves, relate to the much broader subject of natural limits for resources and technologies in general. Such limits generally present themselves as increasing complications that slow the learning of how to do things more efficiently, like the well-known limits of perfecting any process or product or to perfecting measurements.[32] These practical experiences match the predictions of the second law of thermodynamics for the limits of waste reduction generally. Approaching limits of perfecting things to eliminate waste meets geometrically increasing effort to make progress, and provides an environmental measure of all factors seen and unseen changing the learning experience. Perfecting things becomes ever more difficult despite increasing effort despite continuing positive, if ever diminishing, results. The same kind of slowing progress due to complications in learning also appears in the limits of useful technologies and of profitable markets applying to product life cycle management and software development cycles). Remaining market segments or remaining potential efficiencies or efficiencies are found in successively less convenient forms.

Efficiency and development curves typically follow a two-phase process of first bigger steps corresponding to finding things easier, followed by smaller steps of finding things more difficult. It reflects bursts of learning following breakthroughs that make learning easier followed by meeting constraints that make learning ever harder, perhaps toward a point of cessation.

  • Natural Limits One of the key studies in the area concerns diminishing returns on investments generally, either physical or financial, pointing to whole system limits for resource development or other efforts. The most studied of these may be Energy Return on Energy Invested or EROEI, discussed at length in an Encyclopedia of the Earth article and in an OilDrum article and series also referred to as Hubert curves. The energy needed to produce energy is a measure of our difficulty in learning how to make remaining energy resources useful in relation to the effort expended. Energy returns on energy invested have been in continual decline for some time, caused by natural resource limits and increasing investment. Energy is both nature's and our own principal resource for making things happen. The point of diminishing returns is when increasing investment makes the resource more expensive. As natural limits are approached, easily used sources are exhausted and ones with more complications need to be used instead. As an environmental signal persistently diminishing EROI indicates an approach of whole system limits in our ability to make things happen.
  • Useful Natural Limits EROEI measures the return on invested effort as a ratio of R/I or learning progress. The inverse I/R measures learning difficulty. The simple difference is that if R approaches zero R/I will too, but I/R will approach infinity. When complications emerge to limit learning progress the limit of useful returns, uR, is approached and R-uR approaches zero. The difficulty of useful learning I/(R-uR) approaches infinity as increasingly difficult tasks make the effort unproductive. That point is approached as a vertical asymptote, at a particular point in time, that can be delayed only by unsustainable effort. It defines a point at which enough investment has been made and the task is done, usually planned to be the same as when the task is complete. For unplanned tasks it may be either foreseen or discovered by surprise. The usefulness measure, uR, is affected by the complexity of environmental responses that can only be measured when they occur unless they are foreseen.

In culture

[edit]

"Steep learning curve"

[edit]

The expression "steep learning curve" is used with opposite meanings. Most sources, including the Oxford Dictionary of English, the American Heritage Dictionary of the English Language, and Merriam-Webster's Collegiate Dictionary, define a learning curve as the rate at which skill is acquired, so a steep increase would mean a quick increment of skill.[2][33] However, the term is often used in common English with the meaning of a difficult initial learning process.[3][33]

The common English usage aligns with a metaphorical interpretation of the learning curve as a hill to climb. (A steeper hill is initially hard, while a gentle slope is less strainful, though sometimes rather tedious. Accordingly, the shape of the curve (hill) may not indicate the total amount of work required. Instead, it can be understood as a matter of preference related to ambition, personality and learning style.)

The term learning curve with meanings of easy and difficult can be described with adjectives like short and long rather than shallow and steep.[2] If two products have similar functionality then the one with a "steep" curve is probably better, because it can be learned in a shorter time. On the other hand, if two products have different functionality, then one with a short curve (a short time to learn) and limited functionality may not be as good as one with a long curve (a long time to learn) and greater functionality.

For example, the Windows program Notepad is extremely simple to learn, but offers little after this. At the other extreme is the UNIX terminal editor vi or Vim, which is difficult to learn, but offers a wide array of features after the user has learned how to use it.

"On a steep learning curve"

[edit]

Ben Zimmer discusses the use of the term "on a steep learning curve" in Downton Abbey, a television series set in the early 20th century, concentrating mainly on whether use of the term is an anachronism. "Matthew Crawley, the presumptive heir of Downton Abbey and now the co-owner of the estate, says, 'I've been on a steep learning curve since arriving at Downton.' By this he means that he has had a difficult time learning the ways of Downton, but people did not start talking that way until the 1970s."[3][34]

Zimmer also comments that the popular use of steep as difficult is a reversal of the technical meaning. He identifies the first use of steep learning curve as 1973, and the arduous interpretation as 1978.

Difficulty curves in video games

[edit]

The idea of learning curves is often translated into video game gameplay as a "difficulty curve", which described how hard the game may get as the player progresses through the game and requiring the player to either become more proficient with the game, gain better understanding of the game's mechanics, and/or spend time "grinding" to improve their characters. Establishing the right difficulty curve is part of achieving the game balance within a title. As with learning curves in educational settings, difficulty curves can have multitudes of shapes, and games may frequently provide various levels of difficulty that change the shape of this curve relative to its default to make the game harder or easier.[35][36] Optimally the difficulty of a video game increases in correspondence with players ability. Games must neither be too challenging nor too undemanding nor too fortuitous.[37] The players will continue playing as long as a game is perceived to be winnable. This is therefore referred to as the illusion of winnability. To generate an illusion of winnability games can include, internal value (a sense of moving towards a goal and being rewarded for it) driven by conflict which can be generated by an antagonistic environment and story driven suspense in the form of world building. The latter is not pivotal to progressing in a game.[38] Game designers may also make changes in gameplay by, for instance, limiting resources. One perspective is that if players are not tricked to believe that the video game world is real - if the world does not feel vibrant - then there is no point in creating the game.[39][40]

See also

[edit]

References

[edit]
  1. ^ Compare: "Learning Curve". Business Dictionary. Archived from the original on 14 August 2020. Retrieved 8 December 2018. Graphical representation of the common sense principle that more one does something the better one gets at it. Learning curve shows the rate of improvement in performing a task as a function of time, or the rate of change in average cost (in hours or money) as a function of cumulative output.
  2. ^ a b c Reichenbach, Daniel J.; Tackett, A Darrel; Harris, James; Camacho, Diego; Graviss, Edward A.; Dewan, Brendan; Vavra, Ashley; Stiles, Anquonette; Fisher, William E.; Brunicardi, F Charles; Sweeney, John F. (2006). "Laparoscopic Colon Resection Early in the Learning Curve". Annals of Surgery. 243 (6): 730–737. doi:10.1097/01.sla.0000220039.26524.fa. PMC 1570580. PMID 16772776., see the "Discussions" section, Dr. Smith's remark about the usage of the term "steep learning curve": "First, semantics. A steep learning curve is one where you gain proficiency over a short number of trials. That means the curve is steep. I think semantically we are really talking about a prolonged or long learning curve. I know it is a subtle distinction, but I can't miss the opportunity to make that point."
  3. ^ a b c d e Zimmer, Ben (February 8, 2013) A "Steep Learning Curve" for "Downton Abbey". visualthesaurus.com
  4. ^ a b Ebbinghaus, Hermann (1913). "Memory: A Contribution to Experimental Psychology". Annals of Neurosciences. 20 (4). Teachers College, Columbia University: 155–6. doi:10.5214/ans.0972.7531.200408. ISBN 978-0-7222-2928-6. PMC 4117135. PMID 25206041. {{cite journal}}: ISBN / Date incompatibility (help)
  5. ^ a b Hall, Granville Stanley; Titchener, Edward Bradford; Dallenbach, Karl M. (1903). The American Journal of Psychology. Vol. 14. University of Illinois Press.
  6. ^ a b Wright, T. P. (1936). "Factors Affecting the Cost of Airplanes" (PDF). Journal of the Aeronautical Sciences. 3 (4): 122–128. doi:10.2514/8.155.
  7. ^ "Classics in the History of Psychology – Introduction to Ebbinghaus (1885/1913) by R. H. Wozniak". psychclassics.yorku.ca.
  8. ^ Bills, A.G. (1934). General experimental psychology. Longmans Psychology Series. pp. 192–215. New York: Longmans, Green and Co.
  9. ^ Air Materiel Command Wright-Patterson AFB OH. "Source Book of World War II Basic Data-Airframe Industry. Volume 1. Direct Man-Hours-Progress Curves." (1952): 0201.
  10. ^ Asher, H. (1956). Cost-quantity relationships in the airframe industry (Doctoral dissertation, The Ohio State University).
  11. ^ "What is Henderson's Law?". Henderson's Law. Retrieved 2025-08-06.
  12. ^ Henderson, Bruce (2025-08-06) The Experience Curve. Boston Consulting Group
  13. ^ Grant, Robert M. (2004), Contemporary strategy analysis, US, UK, Australia, Germany: Blackwell publishing, ISBN 1-4051-1999-3
  14. ^ Hax, Arnoldo C.; Majluf, Nicolas S. (October 1982), "Competitive cost dynamics: the experience curve", Interfaces, 12 (5): 50–61, doi:10.1287/inte.12.5.50, S2CID 61642172
  15. ^ a b Yelle, Louis E. (April 1979). "The Learning Curve: Historical Review and Comprehensive Survey". Decision Sciences. 10 (2): 302–328. doi:10.1111/j.1540-5915.1979.tb00026.x. ISSN 0011-7315.
  16. ^ Anzanello, Michel Jose; Fogliatto, Flavio Sanson (2025-08-06). "Learning curve models and applications: Literature review and research directions". International Journal of Industrial Ergonomics. 41 (5): 573–583. doi:10.1016/j.ergon.2011.05.001. ISSN 0169-8141.
  17. ^ Abernathy, W. J.; Wayne, K. (1974), "Limits of the learning curve", Harvard Business Review, 52 (5): 109–119
  18. ^ Balacahnder, S.; Srinivasan, K. (1998), "Modifying customer expectations of price decreases for a durable product", Managerial Science, 44 (6): 776–786, doi:10.1287/mnsc.44.6.776
  19. ^ Liao, W. M. (1979), "Effects of learning on resource allocation decisions", Decision Sciences, 10 (1): 116–125, doi:10.1111/j.1540-5915.1979.tb00011.x
  20. ^ Demeester, L. L.; Qi, M. (2005), "Managing learning resources for consecutive product generations", International Journal of Production Economics, 95 (2): 265–283, doi:10.1016/j.ijpe.2004.01.005, S2CID 154822091
  21. ^ Konstantaras, I.; Skouri, K.; Jaber, M. Y. (2012), "Inventory models for imperfect quality items with shortages and learning in inspection", Applied Mathematical Modelling, 36 (11): 5334–5343, doi:10.1016/j.apm.2011.12.005
  22. ^ Mack, Chris A. (May 2011). "Fifty Years of Moore's Law". IEEE Transactions on Semiconductor Manufacturing. 24 (2): 202–207. doi:10.1109/TSM.2010.2096437. ISSN 1558-2345.
  23. ^ Newell, A. (1980) Mechanisms of skill acquisition and the law of practice. University of Southern California
  24. ^ Ritter, F. E., & Schooler, L. J. (2002) "The learning curve". In International Encyclopedia of the Social and Behavioral Sciences, pp. 8602–8605. Amsterdam: Pergamon. ISBN 9780080430768
  25. ^ Leibowitz, Nathaniel; Baum, Barak; Enden, Giora; Karniel, Amir (2010). "The exponential learning equation as a function of successful trials results in sigmoid performance" (PDF). Journal of Mathematical Psychology. 54 (3): 338–340. doi:10.1016/j.jmp.2010.01.006.
  26. ^ "Learning Curve Basics" (PDF). Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06. U.S. Department of Defense Manual Number 5000.2-M, mandates the use of learning curves for costing of defense programs (variable costs of production)
  27. ^ Sammut, Claude (2011). Webb, Geoffrey I. (ed.). Encyclopedia of Machine Learning (1st ed.). Springer. p. 578. ISBN 978-0-387-30768-8.
  28. ^ Madhavan, P.G. (1997). "A New Recurrent Neural Network Learning Algorithm for Time Series Prediction" (PDF). Journal of Intelligent Systems. p. 113, Fig. 3.
  29. ^ Singh, Anmol (2021). "Machine learning for astronomy with scikit learning". Learning Curve My Personal Tutor.
  30. ^ Meek, Christopher; Thiesson, Bo; Heckerman, David (Summer 2002). "The Learning-Curve Sampling Method Applied to Model-Based Clustering" (PDF). Journal of Machine Learning Research. 2 (3): 397.
  31. ^ Gersick, Connie JG (1991). "Revolutionary Change Theories: A Multilevel Exploration of the Punctuated Equilibrium Paradigm". The Academy of Management Review. 16 (1): 10–36. doi:10.5465/amr.1991.4278988. JSTOR 258605.
  32. ^ Petley, Brian W. (1988). "Towards the Limits of Precision and Accuracy in Measurement". Physics in a Technological World (88): 291. Bibcode:1988ptw..conf..291P.
  33. ^ a b "Steep learning curves". 2025-08-06.
  34. ^ Zimmer, Ben (February 13, 2012) "Downton Abbey" anachronisms: beyond nitpickery, upenn.edu, also Comment by J Oliver : Season Three, episode 5
  35. ^ Larsen, Jimmy Marcus (May 24, 2010). "Difficulty Curves". Gamasutra. Retrieved February 3, 2020.
  36. ^ Aponte, Maria-Virginia; Levieux, Guillaume; Natkin, Stéphane (2009). "Scaling the Level of Difficulty in Single Player Video Games" (PDF). In Natkin, S.; Dupire, J. (eds.). Lecture Notes in Computer Science. International Conference on Entertainment Computing 2009. Vol. 5709. Berlin: Springer. doi:10.1007/978-3-642-04052-8_3. Retrieved February 3, 2020.
  37. ^ Ruggill, Judd Ethan; McAllister, Ken S. (11 May 2011). "Work". Gaming Matters: Art, Science, Magic, and the Computer Game Medium. University of Alabama Press. p. 89. ISBN 978-0-8173-1737-9.
  38. ^ Wolf, Mark, J.P. (12 May 2020). World-Builders on World-Building: An Exploration of Subcreation. Taylor & Francis. p. 67. ISBN 978-0-429-51601-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
  39. ^ Van Eck, Richard (31 May 2010). "Feedforward as an Essential Active Principle". Gaming and Cognition: Theories and Practice from the Learning Sciences: Theories and Practice from the Learning Sciences. IGI Global. pp. 112–115. ISBN 978-1-61520-718-3.
  40. ^ Holmes, Dylan (2012). "The Rise of Cutscenes". A Mind Forever Voyaging: A History of Storytelling in Video Games. Dylan Holmes. p. 83. ISBN 978-1-4800-0575-4.
[edit]
感官世界讲的什么 怀不上孕是什么原因 红萝卜和胡萝卜有什么区别 心脏房颤是什么症状 婧五行属什么
公务员是干什么工作的 什么是手淫 婴儿反复发烧是什么原因引起的 鸡内金有什么作用 月经量少是什么原因
手脚麻木是什么原因 百岁山和景田什么关系 子宫直肠陷凹什么意思 吃什么东西排酸最快 3月31日是什么星座
皮肤过敏挂什么科 4月4日什么星座 癸水的根是什么 什么的池塘 打呼噜挂什么科
流产后吃什么水果最佳jasonfriends.com 芥末是什么植物cj623037.com 萝卜不能和什么一起吃hcv8jop8ns8r.cn 心率过快吃什么药hcv9jop7ns2r.cn 手指甲有竖纹什么原因hcv9jop0ns1r.cn
梦见大蜘蛛是什么预兆hcv8jop9ns6r.cn 种马是什么意思hcv7jop4ns7r.cn 裘皮是什么皮hcv8jop3ns4r.cn 假牙什么材质的最好hcv9jop6ns7r.cn 凡士林是什么东西hcv8jop5ns4r.cn
一个日一个安念什么字hcv7jop4ns7r.cn 所不欲勿施于人是什么意思hcv7jop6ns7r.cn 公务员是做什么的bfb118.com 林黛玉是什么病hcv9jop6ns4r.cn 从什么不什么四字词语hcv9jop2ns9r.cn
秋葵是什么cl108k.com 甲亢是什么原因造成的hcv9jop1ns8r.cn 房间放什么可以驱蜈蚣hcv8jop8ns0r.cn 4月份是什么星座hcv8jop2ns7r.cn 女性为什么会肾结石hcv8jop7ns6r.cn
百度