东是什么生肖| 温字五行属什么| 大脑缺氧有什么症状| 什么是酸性食物| 甲类传染病指什么| bpa是什么材料| 血虚吃什么中成药| 补骨头吃什么最好| 伊字五行属什么| 地域黑什么意思| 吊儿郎当是什么意思| 勤字五行属什么| 性质是什么| 反颌是什么意思| 7月26日是什么日子| 六十六大寿有什么讲究| 血沉高说明什么问题| 什么是五行| 白居易是诗什么| 今晚开什么特马| 纹眉失败擦什么淡化| 红枣为什么要去核煮| 鲐背之年是什么意思| 茶叶水洗脸有什么好处| 蚯蚓的血是什么颜色的| 女人吃榴莲有什么好处| 欧了是什么意思| 淋巴结是什么病| 保和丸有什么功效| 天罗地网是什么意思| 脑死亡是什么原因引起的| 双脚踝浮肿是什么原因| 太极贵人是什么意思| 达摩是什么意思| 浅黄色是什么颜色| 什么是尿崩症| 血燥是什么意思| 孩子急性肠胃炎吃什么药| 屁特别多是什么原因| 桃李是什么意思| 豹纹守宫吃什么| 记忆力下降是什么原因引起的| 樱桃是什么季节的水果| 辣皮子是什么| 吃饭时头晕是什么原因| 天秤座属于什么星象| 什么饼不能吃脑筋急转弯| 经常头昏是什么原因| 股票放量是什么意思| 排斥一个人什么意思| 熬夜头疼是什么原因| 百叶是什么| 脸部出油多是什么原因| 红底白杠是什么标志| 左肋骨下方隐隐疼痛是什么原因| 牛栏坑肉桂属于什么茶| 痕迹是什么意思| 来月经有异味什么原因| 拔牙有什么危害| 尿道下裂是什么意思| 什么症状吃保心丸| 头皮长痘痘是什么原因| 痛风吃什么菜比较好| 慢性胃炎有什么症状| 巾帼指什么| 正确的三观是什么| 跑得什么| 阿sir是什么意思| 乳晕是什么| 什么有所什么| 聊是什么意思| 2月29日是什么星座| 皮肤过敏涂什么药膏| 腿外侧是什么经络| n0是什么意思| 血糖低吃什么| 谷读什么| mt指什么| 发烧去医院挂什么科| 虎什么龙什么| 天雨粟鬼夜哭什么意思| 八方来财是什么意思| 羡慕的什么| 水分是什么意思| zm是什么意思| 不敢造次是什么意思| 己卯日五行属什么| 葛根粉有什么功效| 心脏彩超ef是什么意思| 氧气湿化瓶里加什么水| 人血馒头是什么意思| 哥弟属于什么档次| 为什么今年闰六月| 盆腔炎是什么原因造成的| 安徽什么阳| 四川是什么气候| 止血芳酸又叫什么| 嘴唇紫色是什么原因| 晚上喝蜂蜜水有什么好处| 甲亢去医院挂什么科| 哈喽是什么意思| 芬太尼是什么| 吃什么可以提高代谢| 昙花什么时间开花| 内心os是什么意思| 讹诈是什么意思| 已是什么生肖| 噩梦是什么意思| 阴干吃什么补雌激素| 梦女是什么| 染色体是什么意思| ideal是什么意思| 两肋插刀是什么意思| 属猪五行属什么| 心率快吃什么中成药| 什么是功能性子宫出血| 网调是什么意思| 顺丰为什么这么快| 鸡蛋液是什么| 生肉是什么意思| 颈椎疼吃什么药| 手心发烧是什么原因| 蜘蛛最怕什么| 宰相相当于现在的什么官| 红花泡脚有什么好处| 摩羯座什么时候| 棉花是什么时候传入中国的| 狗咬人后狗为什么会死| 单位时间是什么意思| 降火吃什么| 吃坏肚子吃什么药| 全身检查要挂什么科| 珠光宝气是什么生肖| 华盖星是什么意思| 水可以做什么| 沙和尚是什么生肖| 袋鼠属于什么类动物| 喜闻乐见什么意思| 为什么叫211大学| 来例假吃什么水果| 神采什么什么| 肝ca什么意思| 中国属于什么气候| 银屑病吃什么食物最好| 龙是什么命| 心肌缺血是什么原因引起的| 眼带用什么方法消除| 治疗带状疱疹用什么药最好| 五谷丰登是什么生肖| ca199偏高是什么意思| 问加一笔是什么字| ect是什么检查| 真维斯属于什么档次| 茶氨酸是什么| 梦见看电影是什么意思| 抑郁症吃什么食物好| 如履薄冰是什么意思| sdh是什么意思| 便秘吃什么最快排便小孩| 抗ccp抗体高说明什么| 礻字旁与什么有关| 半元音是什么意思| 梦见孩子结婚什么预兆| 张什么结什么| pa是什么单位| 左下腹是什么部位| mra是什么意思| 冰火两重天是什么意思| 梦见自己相亲是什么意思| 1963年是什么年| 激素脸是什么样子| 什么人一年只工作一天| 什么的蚜虫| 怀孕腿抽筋是因为什么原因引起的| 孕妇感冒了对胎儿有什么影响| 肠胃不好吃什么药效果好| 冻干粉是什么| hrd是什么意思| 六月初七是什么星座| 耳毛念什么| 盆底脱垂有什么症状| bb是什么意思| 绿豆配什么打豆浆最好| 月经太多是什么原因| 辛属什么五行| 甲减是什么病| 超声介入是什么意思| 挂匾是什么意思| 皮脂腺囊肿吃什么消炎药| 善莫大焉什么意思| 狗能吃巧克力吗为什么| 姜黄粉是什么做的| 孽缘什么意思| 贪吃的动物是什么生肖| 背锅侠是什么意思| 吃什么补蛋白质| 补肾吃什么东西效果最好| 黄帝内经是什么时期的| sey什么意思| 凝血功能差有什么危害| 弥陀是什么意思| 女累读什么| qn医学上是什么意思| 特诊科是什么意思| 什么花是红色的| 什么的白塔| 有蛇进屋预兆着什么| 寝不言食不语什么意思| 什么病会传染人| 可塑性是什么意思| 乌龟能吃什么| 玫瑰花和什么一起泡水喝好| 三七花泡水喝有什么功效和作用| 重复肾是什么意思| 为什么会得阴道炎| o型血吃什么瘦的最快| 腹泻吃什么药好| 8月1日是什么日子| 呼呼是什么意思| 亭台楼阁是什么意思| 茶颜悦色什么好喝| 尿失禁是什么意思| 现在什么手机好用| epd是什么意思| 戴珍珠手链有什么好处| 1954年属什么生肖| 常态是什么意思| 物尽其用什么意思| 国家电网是什么编制| 15天来一次月经是什么原因| 高血压2级是什么意思| 碱吃多了有什么危害| 蛇毒有什么用| 阴茎进入阴道什么感觉| 普拉提是什么意思| 决心是什么意思| 小是什么生肖| bbw女孩是什么意思| 乙肝小三阳是什么| 寅时是什么时间| 蚊子爱咬什么样的人| 烧钱是什么意思| 歼是什么意思| legacy什么意思| 来大姨妈能吃什么水果| 为什么叫马路| 石光荣是什么军衔| 什么是乙肝病毒携带者| 提溜是什么意思| 胎位lsa是什么意思| 太原有什么特产| cps是什么意思啊| 孩子咬指甲什么原因| 早博是什么意思| 肾阴虚吃什么药最好| 怀孕后的分泌物是什么样的| 见红是什么意思| 电影监制是做什么的| 甘油三酯代表什么| 什么是押韵| 白芷有什么作用| 了凡四训讲的是什么| 绿鼻涕是什么原因| 咳嗽痰多用什么药| 百度Jump to content

英国提前大选,特雷莎梅能稳超胜券吗?

From Wikipedia, the free encyclopedia
百度 这两大因素在目前都有很大程度缓解。

In statistics, multiple correspondence analysis (MCA) is a data analysis technique for nominal categorical data, used to detect and represent underlying structures in a data set. It does this by representing data as points in a low-dimensional Euclidean space. The procedure thus appears to be the counterpart of principal component analysis for categorical data.[citation needed] MCA can be viewed as an extension of simple correspondence analysis (CA) in that it is applicable to a large set of categorical variables.

As an extension of correspondence analysis

[edit]

MCA is performed by applying the CA algorithm to either an indicator matrix (also called complete disjunctive table – CDT) or a Burt table formed from these variables.[citation needed] An indicator matrix is an individuals × variables matrix, where the rows represent individuals and the columns are dummy variables representing categories of the variables.[1] Analyzing the indicator matrix allows the direct representation of individuals as points in geometric space. The Burt table is the symmetric matrix of all two-way cross-tabulations between the categorical variables, and has an analogy to the covariance matrix of continuous variables. Analyzing the Burt table is a more natural generalization of simple correspondence analysis, and individuals or the means of groups of individuals can be added as supplementary points to the graphical display.

In the indicator matrix approach, associations between variables are uncovered by calculating the chi-square distance between different categories of the variables and between the individuals (or respondents). These associations are then represented graphically as "maps", which eases the interpretation of the structures in the data. Oppositions between rows and columns are then maximized, in order to uncover the underlying dimensions best able to describe the central oppositions in the data. As in factor analysis or principal component analysis, the first axis is the most important dimension, the second axis the second most important, and so on, in terms of the amount of variance accounted for. The number of axes to be retained for analysis is determined by calculating modified eigenvalues.

Details

[edit]

Since MCA is adapted to draw statistical conclusions from categorical variables (such as multiple choice questions), the first thing one needs to do is to transform quantitative data (such as age, size, weight, day time, etc) into categories (using for instance statistical quantiles).

When the dataset is completely represented as categorical variables, one is able to build the corresponding so-called complete disjunctive table. We denote this table . If persons answered a survey with multiple choices questions with 4 answers each, will have rows and columns.

More theoretically,[2] assume is the completely disjunctive table of observations of categorical variables. Assume also that the -th variable have different levels (categories) and set . The table is then a matrix with all coefficient being or . Set the sum of all entries of to be and introduce . In an MCA, there are also two special vectors: first , that contains the sums along the rows of , and , that contains the sums along the columns of . Note and , the diagonal matrices containing and respectively as diagonal. With these notations, computing an MCA consists essentially in the singular value decomposition of the matrix:

The decomposition of gives you , and such that with P, Q two unitary matrices and is the generalized diagonal matrix of the singular values (with the same shape as ). The positive coefficients of are the eigenvalues of .

The interest of MCA comes from the way observations (rows) and variables (columns) in can be decomposed. This decomposition is called a factor decomposition. The coordinates of the observations in the factor space are given by

The -th rows of represent the -th observation in the factor space. And similarly, the coordinates of the variables (in the same factor space as observations!) are given by

Recent works and extensions

[edit]

In recent years, several students of Jean-Paul Benzécri have refined MCA and incorporated it into a more general framework of data analysis known as geometric data analysis. This involves the development of direct connections between simple correspondence analysis, principal component analysis and MCA with a form of cluster analysis known as Euclidean classification.[3]

Two extensions have great practical use.

  • It is possible to include, as active elements in the MCA, several quantitative variables. This extension is called factor analysis of mixed data (see below).
  • Very often, in questionnaires, the questions are structured in several issues. In the statistical analysis it is necessary to take into account this structure. This is the aim of multiple factor analysis which balances the different issues (i.e. the different groups of variables) within a global analysis and provides, beyond the classical results of factorial analysis (mainly graphics of individuals and of categories), several results (indicators and graphics) specific of the group structure.

Application fields

[edit]

In the social sciences, MCA is arguably best known for its application by Pierre Bourdieu,[4] notably in his books La Distinction, Homo Academicus and The State Nobility. Bourdieu argued that there was an internal link between his vision of the social as spatial and relational --– captured by the notion of field, and the geometric properties of MCA.[5] Sociologists following Bourdieu's work most often opt for the analysis of the indicator matrix, rather than the Burt table, largely because of the central importance accorded to the analysis of the 'cloud of individuals'.[6]

Multiple correspondence analysis and principal component analysis

[edit]

MCA can also be viewed as a PCA applied to the complete disjunctive table. To do this, the CDT must be transformed as follows. Let denote the general term of the CDT. is equal to 1 if individual possesses the category and 0 if not. Let denote , the proportion of individuals possessing the category . The transformed CDT (TCDT) has as general term:


The unstandardized PCA applied to TCDT, the column having the weight , leads to the results of MCA.

This equivalence is fully explained in a book by Jér?me Pagès.[7] It plays an important theoretical role because it opens the way to the simultaneous treatment of quantitative and qualitative variables. Two methods simultaneously analyze these two types of variables: factor analysis of mixed data and, when the active variables are partitioned in several groups: multiple factor analysis.

This equivalence does not mean that MCA is a particular case of PCA as it is not a particular case of CA. It only means that these methods are closely linked to one another, as they belong to the same family: the factorial methods.[citation needed]

Software

[edit]

There are numerous software of data analysis that include MCA, such as STATA and SPSS. The R package FactoMineR also features MCA. This software is related to a book describing the basic methods for performing MCA .[8] There is also a Python package for [1] which works with numpy array matrices; the package has not been implemented yet for Spark dataframes.

References

[edit]
  1. ^ Le Roux, B. and H. Rouanet (2004), Geometric Data Analysis, From Correspondence Analysis to Structured Data Analysis, Dordrecht. Kluwer: p.179
  2. ^ Hervé Abdi; Dominique Valentin (2007). "Multiple correspondence analysis" (PDF).
  3. ^ Le Roux; B. and H. Rouanet (2004). Geometric Data Analysis, From Correspondence Analysis to Structured Data Analysis. Dordrecht. Kluwer.
  4. ^ Scott, John & Gordon Marshall (2009): Oxford Dictionary of Sociology, p. 135. Oxford: Oxford University Press
  5. ^ Rouanet, Henry (2000) "The Geometric Analysis of Questionnaires. The Lesson of Bourdieu's La Distinction", in Bulletin de Méthodologie Sociologique 65, pp. 4–18
  6. ^ Lebaron, Frédéric (2009) "How Bourdieu “Quantified” Bourdieu: The Geometric Modelling of Data", in Robson and Sanders (eds.) Quantifying Theory: Pierre Bourdieu. Springer, pp. 11-30.
  7. ^ Pagès Jér?me (2014). Multiple Factor Analysis by Example Using R. Chapman & Hall/CRC The R Series London 272 p
  8. ^ Husson F., Lê S. & Pagès J. (2009). Exploratory Multivariate Analysis by Example Using R. Chapman & Hall/CRC The R Series, London. ISBN 978-2-7535-0938-2
[edit]
  • Le Roux, B. and H. Rouanet (2004), Geometric Data Analysis, From Correspondence Analysis to Structured Data Analysis at Google Books: [2]
  • FactoMineR A R software devoted to exploratory data analysis.
肾上腺增生是什么意思 容五行属什么 ooxx是什么意思 小拇指旁边的手指叫什么 梦见偷菜是什么意思
乳杆菌是什么 水中加什么擦玻璃干净 贝珠是什么 老汉是什么意思 藏在我回忆里的那个人什么歌
幽门杆菌是什么意思 淋病挂什么科 静息是什么意思 日本豆腐是用什么做的 为什么不建议小孩吃罗红霉素
今年春节是什么时候 随餐服用是什么时候吃 胡萝卜含有什么维生素 柝什么意思 能够握紧的就别放了是什么歌
王八是什么字hcv7jop7ns4r.cn 农历12月是什么星座hcv7jop9ns5r.cn 血管变窄吃什么能改善hcv9jop2ns6r.cn 空调嗡嗡响是什么原因bfb118.com 三焦是什么器官hcv8jop1ns4r.cn
2d是什么意思hcv9jop8ns0r.cn 吃什么有助于骨头愈合hcv9jop3ns3r.cn 头里面有肿瘤有什么症状hcv9jop7ns4r.cn 人人有的是什么生肖hcv8jop2ns9r.cn 上焦湿热吃什么中成药hcv9jop2ns7r.cn
姑妈是什么关系shenchushe.com 孟力念什么hcv9jop2ns6r.cn 莫名其妙的心情不好是什么原因hcv8jop2ns9r.cn 争议是什么意思hcv9jop6ns9r.cn 字母圈是什么意思hcv8jop4ns1r.cn
什么是危险期hcv9jop7ns0r.cn 什么不周hcv8jop8ns1r.cn 杜甫被称为什么0297y7.com 斯里兰卡用什么货币hcv7jop9ns5r.cn 什么牙什么嘴hcv7jop9ns6r.cn
百度