9像什么| 哪吒是一个什么样的人| 熵是什么| 什么的鸭子| 炖排骨什么时候放盐| 女生没有腋毛代表什么| 左肾结晶是什么意思| 八十岁是什么寿| 奥氮平片是什么药| 氮是什么| 申是什么生肖| sa是什么| 二尾子什么意思| 一个木一个号念什么| 八六年属什么生肖| 胃挂什么科| 木耳与什么食物相克| 拉肚子是什么原因引起的怎么办| 姑婆的老公叫什么| 面起子是什么| 黄疸是什么样子的图片| 小狗打什么疫苗| 胰腺炎是什么引起的| 小孩吃什么提高免疫力| 梦见自己找工作是什么意思| 食欲不振吃什么药| 脂肪瘤吃什么药可以消除| 桔子树用什么肥料最好| iic是什么意思| 默契的意思是什么| 家里为什么突然有床虱| 增生期子宫内膜是什么意思| 梦见小男孩拉屎是什么意思| 吃芒果有什么好处和坏处| 翡翠五行属什么| 雪茄是什么| 伸舌头锻炼有什么好处| 哮喘不能吃什么| 上门女婿什么意思| 孕早期宫缩是什么感觉| 经常射精有什么伤害| 什么是微信号| 骨密度是什么意思| 反吟是什么意思| 朔望月是什么意思| 梦见悬崖峭壁是什么意思| 蝉什么时候出来| 芊芊学子什么意思| bl是什么单位| 置之不理的置是什么意思| 嫡长子是什么意思| 便民门诊是做什么的| 暮雪是什么意思| 甲鱼蛋什么人不能吃| 知性是什么类型的女人| 250什么意思| 月经期肚子疼是什么原因| 鹿鞭泡酒有什么功效| 捕风捉影是什么意思| 骨折喝什么汤恢复得快| 子宫肌瘤有什么危害| 运字是什么结构| 三五成群是什么生肖| 葛根粉吃了有什么作用| 盐酸二甲双胍缓释片什么时候吃| 风寒感冒吃什么水果| pid是什么| 大仙为什么知道你的事| 谨记是什么意思| 小孩子手脚脱皮是什么原因| 茜读什么| 什么菜降血压| 独在异乡为异客异是什么意思| 什么叫负氧离子| 什么牌子的山地车好骑又不贵| 免疫力下降吃什么好| 小孩子腿疼是什么原因| 相亲第一次见面送什么礼物好| 卜在姓氏里读什么| 摩羯女和什么星座最配| 什么什么情深| 三个十念什么| 三八妇女节送什么好| 中国人为什么要学英语| 什么样的人爱长结节| 胎毒是什么样子的图片| 系统性红斑狼疮不能吃什么| 脑出血什么原因引起的| 拉大便有血是什么原因| 什么叫辅酶q10| 自尊心是什么意思| 颈椎反弓是什么意思| 2024是什么年生肖| 体内湿热吃什么中成药| 什么是抗生素| 创意是什么意思| 脾脏是人体的什么器官| 挑食是什么意思| 色拉油是什么油| ne是什么意思| 鸡头米是什么| 肚脐左侧是什么器官| 天雨粟鬼夜哭什么意思| 医保和社保有什么区别| 2016属什么生肖| 橡木色是什么颜色| 甲鱼什么人不能吃| 地黄是什么| 女人手心脚心发热是什么原因| 大腿根内侧发黑是什么原因| 农历3月12日是什么星座| 爱长闭口用什么护肤品| 三羊开泰什么意思| 兵戎相见是什么意思| 吃薄荷叶有什么好处和坏处| 男性结扎是什么意思| 开斋节是什么意思| 周天是什么意思| 阴虚血热什么症状| 一只眼睛充血是什么原因| 脾气虚吃什么药| 珊瑚绒是什么面料| 头皮痒用什么止痒最好| 胃息肉是什么症状| 甲胎蛋白是什么指标| 舌头两边锯齿状是什么原因| 夏至节气吃什么| 夏天可以干什么| 女人在什么时候最想男人| 王字旁的字跟什么有关| 双子座是什么象| 小狗能看见什么颜色| 浠字五行属什么| 鼻子干痒是什么原因| 左室舒张功能减低什么意思| 气血不足吃什么好食补| 什么叫一个周期| 好逸恶劳什么意思| 布衣蔬食是什么意思| 灰指甲是什么原因引起| 什么水果补血效果最好| 怀孕上火吃什么能降火| 水肿是什么意思| 什么是初心| 宫颈多发纳氏囊肿是什么意思| 右枕前位是什么意思| 羔羊跪乳是什么意思| 成群结队是什么意思| 癔症是什么意思| 枸杞有什么功效| 冷笑是什么意思| 检查肾脏挂什么科| 关二爷是什么神| 乳腺是什么| 小别胜新婚什么意思| 邮件号码是什么| 指甲盖有竖纹是什么原因| 棍子鱼又叫什么鱼| 关节咔咔响是什么原因| 一什么棉花糖| %是什么意思| gst是什么| 重建是什么意思| 肝阴虚吃什么中成药| 门前栽什么树最好| 火鸡面为什么那么辣| 小美女是什么意思| spa是什么服务| 怀疑心梗做什么检查| urea是什么意思| 子宫轻度下垂有什么办法恢复| 梦见面包是什么意思| dcc是什么意思| 吃什么排出全身毒素| 抠脚大汉什么意思| 咳嗽一直不好什么原因| 什么东西泡水喝降血压| 维生素c吃多了有什么危害| 相濡以沫是什么生肖| 什么体投地| 排卵期过后是什么期| 高湛为什么帮梅长苏| 阴道疼痛什么原因| 云吞是什么| 青霉素是什么药| 龙蛇混杂是什么意思| 孤僻的人给人什么感觉| 青蛙靠什么呼吸| 贞操锁是什么| 什么不可当| 屁股里面疼是什么原因| 吃了龙虾后不能吃什么| 七夕节是什么节日| 自提是什么意思| 胆囊是什么| 想请假找什么理由好| 胃痉挛吃什么药最有效| 中央空调什么牌子好| 鲁米那又叫什么| 四月二十一是什么星座| vsop是什么意思| 补钙过量有什么害处| 81年属什么| 喝绿茶对身体有什么好处| 早早孕是什么意思| 男生适合什么职业| 泡热水脚有什么好处| 蜂蜜什么时候喝最好| 最近发胖过快什么原因| 中医的精髓是什么| 诸葛亮是一个什么样的人| 吃饭流汗是什么原因| 赫兹是什么意思| 攀龙附凤是什么生肖| 六月五号是什么星座| 小拇指发麻是什么原因| 梦见牙齿掉了什么意思| 奶油霜是什么| 血液病有什么症状| 发烧去医院挂什么科| 拔了尿管尿不出来有什么好办法| 属羊是什么命| 间接胆红素高是什么意思| 嗜睡是什么病的前兆| 不检点是什么意思| 对立面是什么意思| alt医学上是什么意思| 肝fnh是什么病| 口是心非是什么生肖| 7.14什么情人节| 一月二十三号是什么星座| 老人脚背肿是什么原因| 黄瓜是什么科| 晚上尿次数多什么原因| 绿色大便是什么原因| 流苏是什么东西| 伤口发炎用什么药| 中午适合吃什么| 尿多尿急是什么原因| 肚子胀痛什么原因| 呼吸衰竭是什么意思| 最近我和你都有一样的心情什么歌| bebe是什么牌子| 鱼胶是鱼的什么部位| 南瓜不能和什么食物一起吃| 珞字五行属什么| visa卡是什么| 上颚起泡是什么原因| 为什么会孕酮低| 女人脸黄是什么原因该怎么调理| 手足口病吃什么药最好| 十月十六号是什么星座| 夜莺是什么鸟| 正连级是什么军衔| plein是什么牌子| 杜甫号什么| 查微量元素挂什么科| 神经系统由什么组成| 肾结石什么引起的| dq什么意思| 什么东西放进去是硬的拿出来是软的| 仓促是什么意思| 皮质醇高是什么原因| 卿本佳人什么意思| 百度Jump to content

为什么不建议治疗幽门螺杆菌

From Wikipedia, the free encyclopedia
CNC Support Robot
百度 人民政协是专门协商机构,必须求真务实提高协商能力水平。

Robotics engineering is a branch of engineering that focuses on the conception, design, manufacturing, and operation of robots. It involves a multidisciplinary approach, drawing primarily from mechanical, electrical, software, and artificial intelligence (AI) engineering.[1][2]

Robotics engineers are tasked with designing these robots to function reliably and safely in real-world scenarios, which often require addressing complex mechanical movements, real-time control, and adaptive decision-making through software and AI.[1]

Fundamental disciplines

[edit]

Robotics engineering combines several technical disciplines, all of which contribute to the performance, autonomy, and robustness of a robot.

Mechanical engineering and kinematics

[edit]

Mechanical engineering is responsible for the physical construction and movement of robots. This involves designing the robot's structure, joints, and actuators, as well as analyzing its kinematics and dynamics.[3]

Kinematics

[edit]

Kinematic models are essential for controlling the movements of robots. Robotics engineers use forward kinematics to calculate the positions and orientations of a robot's end-effector, given specific joint angles, and inverse kinematics to determine the joint movements necessary for a desired end-effector position. These calculations allow for precise control over tasks such as object manipulation or locomotion.[4]

Actuation and materials

[edit]

Robotics engineers select actuators—such as electric motors, hydraulic systems, or pneumatic systems—based on the robot's intended function, power needs, and desired performance characteristics.[5] Materials used in the construction of robots are also carefully chosen for strength, flexibility, and weight, with lightweight alloys and composite materials being popular choices for mobile robots.[6]

Electrical and electronics engineering

[edit]

Robots depend on electrical systems for power, communication, and control.

Power management

[edit]

Powering a robot's motors, sensors, and processing units requires sophisticated electrical circuit design. Robotics engineers ensure that power is distributed efficiently and safely across the system, often using batteries or external power sources in a way that minimizes energy waste.[7][8]

Signal processing and sensors

[edit]

A robot's ability to interact with its environment depends on interpreting data from various sensors. Electrical engineers in robotics design systems to process signals from cameras, LiDAR, ultrasonic sensors, and force sensors, filtering out noise and converting raw data into usable information for the robot's control systems.[9][10]

Software engineering

[edit]

Software engineering is a fundamental aspect of robotics, focusing on the development of the code and systems that control a robot's hardware, manage real-time decision-making, and ensure reliable operation in complex environments. Software in robotics encompasses both low-level control software and high-level applications that enable advanced functionalities.[11]

Embedded systems

[edit]

Robotics engineers develop embedded systems that interface directly with a robot's hardware, managing actuators, sensors, and communication systems. These systems must operate in real-time to process sensor inputs and trigger appropriate actions, often with strict constraints on memory and processing power.[12][13]

Software architectures and frameworks

[edit]

Modern robots rely on modular and scalable software architectures. A popular framework in the field is the Robot Operating System (ROS), which facilitates communication between different subsystems and simplifies the development of robotic applications. Engineers use such frameworks to build flexible systems capable of handling tasks such as motion planning, perception, and autonomous decision-making.[14]

Real-time systems

[edit]

Robots frequently operate in environments where real-time processing is critical. Robotics engineers design software that can respond to sensor data and control actuators within tight time constraints. This includes optimizing algorithms for low-latency and developing robust error-handling procedures to prevent system failure during operation.[15]

AI engineering

[edit]

AI engineering plays an increasingly critical role in enabling robots to perform complex, adaptive tasks. It focuses on integrating artificial intelligence techniques such as machine learning, computer vision, and natural language processing to enhance a robot's autonomy and intelligence.[16]

Perception and computer vision

[edit]

Robots equipped with AI-powered perception systems can process and interpret visual and sensory data from their surroundings. Robotics engineers develop algorithms for object recognition, scene understanding, and real-time tracking, allowing robots to perceive their environment in ways similar to humans. These systems are often used for tasks such as autonomous navigation or grasping objects in unstructured environments.[17][18]

Machine learning for control and decision-making

[edit]

Machine learning techniques, particularly reinforcement learning and deep learning, allow robots to improve their performance over time. Robotics engineers design AI models that enable robots to learn from their experiences, optimizing control strategies and decision-making processes. This is particularly useful in environments where pre-programmed behavior is insufficient, such as in search and rescue missions or unpredictable industrial tasks.[19][20]

Control systems and feedback loops

[edit]

Control systems engineering ensures that robots move accurately and perform tasks in response to environmental stimuli. Robotics engineers design control algorithms that manage the interaction between sensors, actuators, and software.[21][22]

Closed-loop control

[edit]

Most robots rely on closed-loop control systems, where sensors provide continuous feedback to adjust movements and behaviors. This is essential in applications like robotic surgery, where extreme precision is required, or in manufacturing, where consistent performance over repetitive tasks is critical.[22][23]

Adaptive and nonlinear control systems

[edit]

For more advanced applications, robotics engineers develop adaptive control systems that can modify their behavior in response to changing environments. Nonlinear control techniques are employed when dealing with complex dynamics that are difficult to model using traditional methods, such as controlling the flight of drones or autonomous underwater vehicles.[24][25][26]

Key tools and technologies

[edit]

Robotics engineers leverage a wide array of software tools and technologies to design, test, and refine robotic systems.

Simulation software

[edit]

Before physical prototypes are created, robotics engineers use advanced simulation software to model and predict the behavior of robotic systems in virtual environments. MATLAB and Simulink are standard tools for simulating both the kinematics (motion) and dynamics (forces) of robots. These platforms allow engineers to develop control algorithms, run system-level tests, and assess performance under various conditions without needing physical hardware. ROS (Robot Operating System) is another key framework, facilitating the simulation of robot behaviors in different environments.[27]

CAD and 3D modeling

[edit]

For mechanical design, robotics engineers use Computer-Aided Design (CAD) software, such as SolidWorks, AutoCAD, and PTC Creo, to create detailed 3D models of robotic components. These models are essential for visualizing the physical structure of the robot and for ensuring that all mechanical parts fit together precisely. CAD models are often integrated with simulation tools to test mechanical functionality and detect design flaws early in the process.[28]

Rapid prototyping and 3D printing

[edit]

Once the designs are verified through simulation, rapid prototyping technologies, including 3D printing and CNC machining, allow for the fast and cost-effective creation of physical prototypes. These methods enable engineers to iterate quickly, refining the design based on real-world testing and feedback, reducing the time to market.[29][30]

Finite element analysis (FEA)

[edit]

To ensure the robustness and durability of robotic components, engineers perform structural testing using finite alement analysis (FEA) software like ANSYS and Abaqus. FEA helps predict how materials will respond to stress, heat, and other environmental factors, optimizing designs for strength, efficiency, and material usage.[31]

Hardware-in-the-loop (HIL) testing

[edit]

To bridge the gap between simulation and physical testing, robotics engineers often use hardware-in-the-loop (HIL) systems. HIL testing integrates real hardware components into simulation models, allowing engineers to validate control algorithms and system responses in real-time without needing the full robotic system built, thus reducing risks and costs.[32]

Challenges

[edit]

The complexity of robotics engineering presents ongoing challenges.

Robustness and fault tolerance

[edit]

Designing robots that can reliably operate in unpredictable environments is a key engineering challenge. Engineers must create systems that can detect and recover from hardware malfunctions, sensor failures, or software errors. This is important in mission-critical applications such as space exploration or medical robotics.[33][34]

Safety in human-robot interaction

[edit]

Ensuring safety in human-robot interaction is a significant challenge in the field of robotics engineering. In addition to technical aspects, such as the development of sensitive control systems and force-limited actuators, engineers must address the ethical and legal implications of these interactions. AI algorithms are employed to enable robots to anticipate and respond to human behavior in collaborative environments; however, these systems are not without flaws. When errors occur—such as a robot misinterpreting human movement or failing to halt its actions in time—the issue of responsibility arises.[35]

This question of accountability poses a substantial ethical dilemma. Should the responsibility for such errors fall upon the engineers who designed the robot, the manufacturers who produced it, or the organizations that deploy it? Furthermore, in cases where AI algorithms play a key role in the robot's decision-making process, there is the added complexity of determining whether the system itself could be partly accountable. This issue is particularly pertinent in industries such as healthcare and autonomous vehicles, where mistakes may result in severe consequences, including injury or death.[36]

Current legal frameworks in many countries have not yet fully addressed the complexities of human-robot interaction. Laws concerning liability, negligence, and safety standards often struggle to keep pace with technological advancements. The creation of regulations that clearly define accountability, establish safety protocols, and safeguard human rights will be crucial as robots become increasingly integrated into daily life.[36][37][38]

Optimization of motion and energy efficiency

[edit]

Robotics engineers must balance the need for high performance with energy efficiency. Motion-planning algorithms and energy-saving strategies are critical for mobile robots, especially in applications like autonomous drones or long-duration robotic missions where battery life is limited.[39][40]

References

[edit]
  1. ^ a b "Robotics engineer". National Careers Service. Archived from the original on September 21, 2020. Retrieved 2025-08-06.
  2. ^ "How to become a Robotics Engineer - Salary, Qualifications, Skills & Reviews". SEEK. Retrieved 2025-08-06.
  3. ^ "Blog - Mechanical Engineering in Robotics: Challenges and Opportunities". Redline Group. Retrieved 2025-08-06.
  4. ^ Singh, Randheer; Kukshal, Vikas; Yadav, Vinod Singh (2021). "A Review on Forward and Inverse Kinematics of Classical Serial Manipulators". In Rakesh, Pawan Kumar; Sharma, Apurbba Kumar; Singh, Inderdeep (eds.). Advances in Engineering Design. Lecture Notes in Mechanical Engineering. Singapore: Springer. pp. 417–428. doi:10.1007/978-981-33-4018-3_39. ISBN 978-981-334-018-3.
  5. ^ Hollerbach, John M.; Hunter, Ian W.; Ballantyne, John (1992). "A Comparative Analysis of Actuator Technologies for Robotics". Robotics Review 2. The MIT Press. pp. 299–342.
  6. ^ Rothemund, Philipp; Kim, Yoonho; Heisser, Ronald H.; Zhao, Xuanhe; Shepherd, Robert F.; Keplinger, Christoph (December 2021). "Shaping the future of robotics through materials innovation". Nature Materials. 20 (12): 1582–1587. Bibcode:2021NatMa..20.1582R. doi:10.1038/s41563-021-01158-1. ISSN 1476-4660. PMID 34815572.
  7. ^ Mansor, Maszatul M.; Giagkiozis, Ioannis; Wall, Derek; Mills, Andrew R.; Purshouse, Robin C.; Fleming, Peter J. (2025-08-06). "Real-Time Improved Power Management for Autonomous Systems". IFAC Proceedings Volumes. 19th IFAC World Congress. 47 (3): 2634–2639. doi:10.3182/20140824-6-ZA-1003.00854. ISSN 1474-6670.
  8. ^ Ogawa, Kazuya; Kim, Hyonju; Mizukawa, Makoto; Ando, Yoshinobu (2006). "Development of the Robot Power Management System Adapting to Tasks and Environments -The design guideline of the Power Control System Applied to the Distributed Control Robot". 2006 SICE-ICASE International Joint Conference. IEEE. pp. 2042–2046. doi:10.1109/sice.2006.315489. ISBN 89-950038-4-7.
  9. ^ Edwards, John (March 2022). "Signal Processing Supports Robotic Innovation: Robots are on a roll as new designs and capabilities open the door to fresh applications [Special Reports]". IEEE Signal Processing Magazine. 39 (2): 14–16. Bibcode:2022ISPM...39b..14E. doi:10.1109/MSP.2021.3135828. ISSN 1053-5888.
  10. ^ Fu, King S.; Gonzalez, Rafael C.; Lee, C. S. G. (1988). Robotics: control, sensing, vision, and intelligence. McGraw-Hill series in CAD/CAM, robotics and computer vision (2. print ed.). New York: McGraw-Hill. ISBN 978-0-07-100421-3.
  11. ^ "Robotics Software Engineering | Frontiers Research Topic". www.frontiersin.org. Retrieved 2025-08-06.
  12. ^ Br?unl, Thomas (2022). Embedded robotics: from mobile robots to autonomous vehicles with Raspberry Pi and Arduino (Fourth ed.). Singapore: Springer. ISBN 978-981-16-0803-2.
  13. ^ Malik, Puru; Kumar, Sanjiv (2025-08-06). "Embedded Systems and Applications in Robotic". International Journal of Engineering Research & Technology. 6 (17).
  14. ^ Robot Operating System (ROS): The Complete Reference (Volume 1). Studies in Computational Intelligence (Softcover reprint of the original 1st edition 2016 ed.). Cham: Springer International Publishing. 2018. ISBN 978-3-319-26052-5.
  15. ^ "Introduction to Real-time Systems". design.ros2.org. Retrieved 2025-08-06.
  16. ^ Rajan, Kanna; Saffiotti, Alessandro (2025-08-06). "Towards a science of integrated AI and Robotics". Artificial Intelligence. Special Issue on AI and Robotics. 247: 1–9. doi:10.1016/j.artint.2017.03.003. ISSN 0004-3702.
  17. ^ Sankowski, Dominik; Nowakowski, Jacek, eds. (2014). Computer vision in robotics and industrial applications. Series in computer vision. New Jersey: World Scientific. ISBN 978-981-4583-71-8.
  18. ^ Jarvis (June 1982). "A Computer Vision and Robotics Laboratory". Computer. 15 (6): 8–24. doi:10.1109/MC.1982.1654046. ISSN 0018-9162.
  19. ^ Roy, Nicholas; Posner, Ingmar; Barfoot, Tim; Beaudoin, Philippe; Bengio, Yoshua; Bohg, Jeannette; Brock, Oliver; Depatie, Isabelle; Fox, Dieter (2025-08-06), From Machine Learning to Robotics: Challenges and Opportunities for Embodied Intelligence, arXiv:2110.15245
  20. ^ Mosavi, Amir; Varkonyi, Annamaria (2025-08-06). "Learning in Robotics" (PDF). International Journal of Computer Applications. 157 (1): 8–11. doi:10.5120/ijca2017911661.
  21. ^ Kaushik, Rajkumar; Rawat, Akash; Tiwari, Arpita (2017). "An Overview on Robotics and Control Systems". International Journal of Technical Research & Science. 6 (10).
  22. ^ a b Anood Ibrahim; Alexander, Reba Rachel; Shahid, Mohammed; Sanghar, Umar; Royson Donate; D " Souza (2016). "Control Systems in Robotics: A Review". International Journal of Engineering Inventions. doi:10.13140/RG.2.2.16873.26724.
  23. ^ Kuntze, H. -B. (2025-08-06). "Closed-Loop Algorithms for Industrial Robots — Status and Recent Trends". IFAC Proceedings Volumes. 1st IFAC Symposium on Robot Control (SYROCO '85), Barcelona, Spain`, 6–8 November 1985. 18 (16): 437–443. doi:10.1016/S1474-6670(17)60003-X. ISSN 1474-6670.
  24. ^ Bar-Kana, Izhak; Guez, Allon (July 1990). "Simple adaptive control for a class of non-linear systems with application to robotics". International Journal of Control. 52 (1): 77–99. doi:10.1080/00207179008953525. ISSN 0020-7179.
  25. ^ Annaswamy, Anuradha M. (2025-08-06). "Adaptive Control and Intersections with Reinforcement Learning". Annual Review of Control, Robotics, and Autonomous Systems. 6 (1): 65–93. doi:10.1146/annurev-control-062922-090153. ISSN 2573-5144.
  26. ^ Pshikhopov, V. Kh.; Krukhmalev, V.A.; Medvedev, M. Yu; Fedorenko, R.V.; Kopylov, S.A.; Budko, A. Yu; Chufistov, V.M. (October 2013). "Adaptive Control System Design for Robotic Aircrafts [sic]". 2013 Latin American Robotics Symposium and Competition. IEEE. pp. 67–70. doi:10.1109/lars.2013.59. ISBN 978-0-7695-5139-5.
  27. ^ ?lajpah, Leon (2025-08-06). "Simulation in robotics". Mathematics and Computers in Simulation. 5th Vienna International Conference on Mathematical Modelling/Workshop on Scientific Computing in Electronic Engineering of the 2006 International Conference on Computational Science/Structural Dynamical Systems: Computational Aspects. 79 (4): 879–897. doi:10.1016/j.matcom.2008.02.017. ISSN 0378-4754.
  28. ^ Henderson, T.; Weitz, E.; Hansen, C.; Grupen, R.; Ho, C.; Bhanu, B. (1987). "CAD-based robotics". Proceedings. 1987 IEEE International Conference on Robotics and Automation. Vol. 4. Institute of Electrical and Electronics Engineers. pp. 631–635. doi:10.1109/ROBOT.1987.1087980.
  29. ^ Won, J.; DeLaurentis, K.; Mavroidis, C. (2000). "Rapid prototyping of robotic systems". Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). Vol. 4. IEEE. pp. 3077–3082. doi:10.1109/ROBOT.2000.845136. ISBN 978-0-7803-5886-7.
  30. ^ Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun (2025-08-06). "3D printing for soft robotics – a review". Science and Technology of Advanced Materials. 19 (1): 243–262. Bibcode:2018STAdM..19..243G. doi:10.1080/14686996.2018.1431862. ISSN 1468-6996. PMC 5917433. PMID 29707065.
  31. ^ Srirekha, A; Bashetty, Kusum (2010). "Infinite to finite: An overview of finite element analysis". Indian Journal of Dental Research. 21 (3): 425–432. doi:10.4103/0970-9290.70813. ISSN 0970-9290. PMID 20930357.
  32. ^ Martin, Adrian; Emami, M. (June 2006). "An Architecture for Robotic Hardware-in-the-Loop Simulation". 2006 International Conference on Mechatronics and Automation. IEEE. pp. 2162–2167. doi:10.1109/icma.2006.257628. ISBN 1-4244-0465-7.
  33. ^ Cavallaro, Joseph; Walker, Ian (2025-08-06). "A survey of NASA and military standards on fault tolerance and reliability applied to robotics". Conference on Intelligent Robots in Factory, Field, Space, and Service. American Institute of Aeronautics and Astronautics. doi:10.2514/6.1994-1211.
  34. ^ Noureddine, Farid; Larroque, Benoit; Rotella, Frederic (2009). "Fault tolerance in robotics". International Journal of Mechatronics and Manufacturing Systems. 2 (3): 294. doi:10.1504/IJMMS.2009.026045. ISSN 1753-1039.
  35. ^ Webb, Helena; Jirotka, Marina; F.T. Winfield, Alan; Winkle, Katie (2025-08-06). "Human-robot relationships and the development of responsible social robots". Proceedings of the Halfway to the Future Symposium 2019. HttF '19. New York, NY, USA: Association for Computing Machinery. pp. 1–7. doi:10.1145/3363384.3363396. ISBN 978-1-4503-7203-9.
  36. ^ a b Hanna, Atieh; Larsson, Simon; G?tvall, Per-Lage; Bengtsson, Kristofer (2025-08-06). "Deliberative safety for industrial intelligent human–robot collaboration: Regulatory challenges and solutions for taking the next step towards industry 4.0". Robotics and Computer-Integrated Manufacturing. 78: 102386. doi:10.1016/j.rcim.2022.102386. ISSN 0736-5845.
  37. ^ Elish, M C (2016). "Moral Crumple Zones: Cautionary Tales in Human-Robot Interaction (WeRobot 2016)". SSRN Electronic Journal. doi:10.2139/ssrn.2757236. ISSN 1556-5068. SSRN 2757236.
  38. ^ Leung, Karen; Schmerling, Edward; Zhang, Mengxuan; Chen, Mo; Talbot, John; Gerdes, J Christian; Pavone, Marco (September 2020). "On infusing reachability-based safety assurance within planning frameworks for human–robot vehicle interactions". The International Journal of Robotics Research. 39 (10–11): 1326–1345. arXiv:2012.03390. doi:10.1177/0278364920950795. ISSN 0278-3649.
  39. ^ Swanborn, Stan; Malavolta, Ivano (2025-08-06). "Energy efficiency in robotics software: A systematic literature review". Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering Workshops. ASE '20. New York, NY, USA: Association for Computing Machinery. pp. 144–151. doi:10.1145/3417113.3422997. ISBN 978-1-4503-8128-4.
  40. ^ "A new optimization framework for robot motion planning". MIT News | Massachusetts Institute of Technology. 2025-08-06. Retrieved 2025-08-06.
空调开除湿有什么作用 政客是什么意思 腿抖是什么病的预兆 五月二十三日是什么星座 什么是三宝
8月10号是什么星座 肝的功能是什么 梦见葡萄是什么意思 小孩腰疼是什么原因引起的 什么食物防辐射
喘气费劲是什么原因 头发里长痣代表什么 什么尾巴长不了 抗体是什么 中性粒细胞比率偏低是什么意思
办健康证要带什么证件 霜和乳有什么区别 hpv是什么意思 1919年属什么生肖 樱桃有什么营养价值
icu是什么意思hcv8jop6ns7r.cn 上车饺子下车面什么意思hcv8jop1ns8r.cn 饭后呕吐是什么原因引起的gangsutong.com 五十而知天命是什么意思hcv8jop7ns2r.cn aosc医学是什么意思aiwuzhiyu.com
枸杞配什么壮阳hcv8jop8ns1r.cn hpv病毒是什么原因引起的hcv8jop3ns9r.cn 什么是不饱和脂肪酸hcv7jop7ns1r.cn 薄姬为什么讨厌窦漪房hcv8jop5ns6r.cn 结婚8年是什么婚hcv8jop8ns1r.cn
喉咙痛吃什么饭菜好hcv8jop8ns1r.cn 朱红色是什么颜色hcv8jop0ns9r.cn 女生喜欢什么礼物hcv7jop5ns4r.cn 生化妊娠后需要注意什么hcv9jop0ns1r.cn 糖醋排骨用什么醋好吃hcv8jop6ns3r.cn
梦见鸡是什么意思hcv7jop7ns1r.cn 海马用什么呼吸hcv9jop1ns4r.cn 216是什么意思hcv8jop3ns5r.cn 头上长虱子什么原因引起的hcv8jop6ns7r.cn 什么是割礼hcv8jop6ns0r.cn
百度