哥哥的孩子叫我什么| igg抗体是什么意思| 中国最长的河流是什么河| 什么是阳虚| 肚子疼想吐是什么原因| 蟑螂长什么样| 降尿酸吃什么药| 精分什么意思| 生殖疱疹用什么药效果好| 玉米水喝了有什么好处| 误喝碘伏有什么伤害吗| 呆萌是什么意思| 西湖醋鱼是什么鱼| 膝盖背面叫什么| 有什么症状是肯定没怀孕| 鼠妇吃什么| 二氧化碳结合力是什么| 上海五行属什么| 男人蛋蛋疼是什么原因| 10点多是什么时辰| 医院dr检查是什么| 吃什么东西涨奶最快| 什么书最香| 痛风挂什么科| 老公护着婆婆说明什么| 耳朵长疙瘩是什么原因| 为什么睡觉会打呼| 什么下奶最快最多| 什么是生殖器疱疹| 尿路感染为什么会尿血| 慢性阑尾炎吃什么药| 1987年五行属什么| 肿瘤是什么样子的| crayon是什么意思| 扁桃体挂什么科| 大姨妈来了可以吃什么水果| 手指尖疼是什么原因| 牙龈疼痛吃什么药| 老舍有什么称号| 莲藕什么时候种植最佳| 上午11点是什么时辰| 10周年结婚是什么婚| cea升高是什么意思| 什么是指标到校| 结缡什么意思| 氯超标是因为什么原因| 父母都是a型血孩子是什么血型| 尿道感染流脓吃什么药| 马步鱼为什么是甜的| u是什么单位| 二级警监是什么级别| 阳卦代表什么意思| 炖排骨放什么调料| 随诊复查是什么意思| 血管是什么组织| 结缔组织病是什么病| 为什么黄瓜是绿色的却叫黄瓜| 冠状沟有白色分泌物是什么原因| 令坦是对方什么人的尊称| 核桃壳有什么用处| 天灵盖是什么意思| 一级警长是什么级别| 咽喉老有痰是什么原因| 手指发白是什么原因| 堃读什么| 羊五行属什么| 四川是什么气候| 7点至9点是什么时辰| 青城之恋是什么生肖| 双脚浮肿是什么原因| 用什么泡水喝对肝脏好| 鼻炎吃什么消炎药| 什么中药补肾最好| 粘液丝高是什么原因| 六八年属什么| 全身燥热是什么原因引起的| 娇韵诗属于什么档次| 山东古代叫什么| 狗肉配什么菜好吃| yair是什么牌子的空调| 尿里面有血是什么原因| 天德月德是什么意思| 52什么意思| 什么情况属于诈骗| 月底是什么时候| 高血压吃什么| 腹泻可以吃什么食物| 反流性食管炎有什么症状| 前庭功能减退是什么原因| 半边屁股疼是什么原因| 着床出血是什么颜色| 肠道ct能检查什么| 浮躁的意思是什么| 腰扭伤挂什么科| 情绪高涨是什么意思| 钾低了会出现什么症状| 乌云为什么是黑色的| 老年人脚肿挂什么科| 马加大是什么字| 爷爷的妈妈叫什么| 苏打水什么牌子的好| 深v是什么意思| 慢性非萎缩性胃炎是什么意思| 皮肤爱出油是什么原因| 师团长是什么级别| 四季豆是什么| snidel是什么牌子| 增加胃动力最好的药是什么药| 切尔斯什么意思| 什么叫引产| 带状疱疹是什么病| 儿童去火吃什么药| 8月13号什么星座| 什么是根管治疗| 心脏房颤是什么症状| 什么空调好| 红楼梦大结局是什么| 天雨粟鬼夜哭什么意思| 尿酸偏高有什么危害| 什么防辐射最好| 白球比低是什么原因| 蒙羞是什么意思| 宫内膜回声欠均匀是什么意思| 吃什么药提高免疫力| 上位者是什么意思| 什么是泡沫尿| 波司登是什么档次| 首长是什么级别| 梨和什么一起榨汁好喝| 什么是导管| 什么言什么语| 肛裂出血用什么药| 什么植物好养又适合放在室内| 什么叫上升星座| 手足口病是什么症状| 月经来了一点就没了是什么原因| 肌肉一跳一跳什么原因| A型血为什么是完美血型| 螨虫长什么样子图片| 梦见蟒蛇是什么预兆| 区人大代表是什么级别| 人最重要的是什么| 回门带什么礼物| 安静如鸡什么意思| 审美观是什么意思| 甘草有什么作用| 镜花水月什么意思| 噤若寒蝉是什么生肖| 太平天国为什么会失败| 闲云野鹤指什么生肖| 看花灯是什么节日| 颈动脉彩超能查出什么| 奶豆腐是什么| 瞌睡多是什么原因| 药学是什么| 肚子为什么会疼| 爱情是什么| 为什么邓超对鹿晗很好| 佛跳墙是什么菜系| 脸上长黑痣是什么原因| 绿茶有什么好处| 梦见吃西红柿是什么意思| 早上空腹干呕什么原因| 三个羊是什么字| 12月24号是什么星座| 关节镜是什么| 苏醒是什么意思| 大象的耳朵像什么一样| hpv用什么药| 有什么有什么成语| 渡劫是什么意思| 炉甘石是什么东西| 什么样的青蛙| 女右眉毛跳是什么预兆| sm是什么意思啊| 早上四点是什么时辰| 羊肚菌有什么功效和作用| 反流性食管炎吃什么药好| 34岁属什么| 见好就收是什么意思| 肚子疼呕吐是什么原因引起的| 黄芪入什么经| 感恩节为什么要吃火鸡| 八面玲珑什么意思| 车加失读什么| 查肝功能能查出什么病| 拮抗是什么意思| 低头头晕是什么原因| 红红的苹果像什么句子| 自闭什么意思| hoka是什么牌子| 靴型心见于什么病| 中午12点到1点是什么时辰| 肌酐低什么原因| pop什么意思| 有加有减先算什么| 补气补血吃什么药| 补钙吃什么维生素| 油边是什么肉| 什么是基数| 乙肝通过什么传染| 桂花什么时候开| 蛋白尿是什么样子| 肺泡是什么| 珝是什么意思| 大麻是什么| 阻生智齿是什么意思| 荨麻疹是什么样的| 38节送什么礼物| 今年农历是什么年号| 女人切除子宫有什么影响| 什么是苏打水| 破军星是什么意思| 夭折是什么意思| 艾滋病中期有什么症状| ygk是什么牌子| 三个吉念什么| 里正是什么官| 石钟乳是什么意思| 肝郁是什么意思| 乳房结节吃什么药| 甘油三酯高会引起什么病| 习俗是什么意思| 男人嘴小代表什么意思| 短发适合什么脸型| 唐伯虎是什么生肖| 什么家庭不宜挂八骏图| 阴茎硬不起来吃什么药| 扁平疣挂什么科| 羔羊跪乳是什么意思| 枸杞泡茶喝有什么功效| 祖坟冒青烟是什么意思| 腿疼膝盖疼是什么原因| 前程无量是什么意思| 做核磁共振需要注意什么| 为什么叫香港脚| 金字旁的字与什么有关| 小孩咳嗽有痰吃什么药| 蜂王浆是什么味道| 黄体期是什么时候| 一 什么云| 柠檬是什么季节的水果| 盆腔积液吃什么药效果最好| 上元节是什么节日| 什么病人要补氯化钾呢| 脑袋疼挂什么科| 10月4号什么星座| 区域经理的岗位职责是什么| 什么牌子的蜂蜜比较好| 什么是疣图片| 小孩肠胃感冒吃什么药| 补充电解质喝什么水| tony是什么意思| 做胃肠镜挂什么科| ca医学上是什么意思| 推介会是什么意思| 一什么新闻| 梨花代表什么生肖| 椎管狭窄是什么意思| 梦见自己的手机丢了是什么意思| 绿色代表什么| 画蛇添足什么意思| 心理疾病吃什么药| 高压高是什么原因引起的| 百度Jump to content

【鹅眼】北京到成都 26小时春运路

From Wikipedia, the free encyclopedia
百度 (注:1964年7月,张学良与赵一荻小姐结婚,当时联合报刊登了这条消息。

In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density (also known as the power spectral density) of a signal from a sequence of time samples of the signal.[1] Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.

Some SDE techniques assume that a signal is composed of a limited (usually small) number of generating frequencies plus noise and seek to find the location and intensity of the generated frequencies. Others make no assumption on the number of components and seek to estimate the whole generating spectrum.

Overview

[edit]
Example of voice waveform and its frequency spectrum
A periodic waveform (triangle wave) and its frequency spectrum, showing a "fundamental" frequency at 220 Hz followed by multiples (harmonics) of 220 Hz
The power spectral density of a segment of music is estimated by two different methods, for comparison

Spectrum analysis, also referred to as frequency domain analysis or spectral density estimation, is the technical process of decomposing a complex signal into simpler parts. As described above, many physical processes are best described as a sum of many individual frequency components. Any process that quantifies the various amounts (e.g. amplitudes, powers, intensities) versus frequency (or phase) can be called spectrum analysis.

Spectrum analysis can be performed on the entire signal. Alternatively, a signal can be broken into short segments (sometimes called frames), and spectrum analysis may be applied to these individual segments. Periodic functions (such as ) are particularly well-suited for this sub-division. General mathematical techniques for analyzing non-periodic functions fall into the category of Fourier analysis.

The Fourier transform of a function produces a frequency spectrum which contains all of the information about the original signal, but in a different form. This means that the original function can be completely reconstructed (synthesized) by an inverse Fourier transform. For perfect reconstruction, the spectrum analyzer must preserve both the amplitude and phase of each frequency component. These two pieces of information can be represented as a 2-dimensional vector, as a complex number, or as magnitude (amplitude) and phase in polar coordinates (i.e., as a phasor). A common technique in signal processing is to consider the squared amplitude, or power; in this case the resulting plot is referred to as a power spectrum.

Because of reversibility, the Fourier transform is called a representation of the function, in terms of frequency instead of time; thus, it is a frequency domain representation. Linear operations that could be performed in the time domain have counterparts that can often be performed more easily in the frequency domain. Frequency analysis also simplifies the understanding and interpretation of the effects of various time-domain operations, both linear and non-linear. For instance, only non-linear or time-variant operations can create new frequencies in the frequency spectrum.

In practice, nearly all software and electronic devices that generate frequency spectra utilize a discrete Fourier transform (DFT), which operates on samples of the signal, and which provides a mathematical approximation to the full integral solution. The DFT is almost invariably implemented by an efficient algorithm called fast Fourier transform (FFT). The array of squared-magnitude components of a DFT is a type of power spectrum called periodogram, which is widely used for examining the frequency characteristics of noise-free functions such as filter impulse responses and window functions. But the periodogram does not provide processing-gain when applied to noiselike signals or even sinusoids at low signal-to-noise ratios[why?]. In other words, the variance of its spectral estimate at a given frequency does not decrease as the number of samples used in the computation increases. This can be mitigated by averaging over time (Welch's method[2])  or over frequency (smoothing). Welch's method is widely used for spectral density estimation (SDE). However, periodogram-based techniques introduce small biases that are unacceptable in some applications. So other alternatives are presented in the next section.

Techniques

[edit]

Many other techniques for spectral estimation have been developed to mitigate the disadvantages of the basic periodogram. These techniques can generally be divided into non-parametric, parametric, and more recently semi-parametric (also called sparse) methods.[3] The non-parametric approaches explicitly estimate the covariance or the spectrum of the process without assuming that the process has any particular structure. Some of the most common estimators in use for basic applications (e.g. Welch's method) are non-parametric estimators closely related to the periodogram. By contrast, the parametric approaches assume that the underlying stationary stochastic process has a certain structure that can be described using a small number of parameters (for example, using an auto-regressive or moving-average model). In these approaches, the task is to estimate the parameters of the model that describes the stochastic process. When using the semi-parametric methods, the underlying process is modeled using a non-parametric framework, with the additional assumption that the number of non-zero components of the model is small (i.e., the model is sparse). Similar approaches may also be used for missing data recovery[4] as well as signal reconstruction.

Following is a partial list of spectral density estimation techniques:

Parametric estimation

[edit]

In parametric spectral estimation, one assumes that the signal is modeled by a stationary process which has a spectral density function (SDF) that is a function of the frequency and parameters .[8] The estimation problem then becomes one of estimating these parameters.

The most common form of parametric SDF estimate uses as a model an autoregressive model of order .[8]:?392? A signal sequence obeying a zero mean process satisfies the equation

where the are fixed coefficients and is a white noise process with zero mean and innovation variance . The SDF for this process is

with the sampling time interval and the Nyquist frequency.

There are a number of approaches to estimating the parameters of the process and thus the spectral density:[8]:?452-453?

  • The Yule–Walker estimators are found by recursively solving the Yule–Walker equations for an process
  • The Burg estimators are found by treating the Yule–Walker equations as a form of ordinary least squares problem. The Burg estimators are generally considered superior to the Yule–Walker estimators.[8]:?452? Burg associated these with maximum entropy spectral estimation.[9]
  • The forward-backward least-squares estimators treat the process as a regression problem and solves that problem using forward-backward method. They are competitive with the Burg estimators.
  • The maximum likelihood estimators estimate the parameters using a maximum likelihood approach. This involves a nonlinear optimization and is more complex than the first three.

Alternative parametric methods include fitting to a moving-average model (MA) and to a full autoregressive moving-average model (ARMA).

Frequency estimation

[edit]

Frequency estimation is the process of estimating the frequency, amplitude, and phase-shift of a signal in the presence of noise given assumptions about the number of the components.[10] This contrasts with the general methods above, which do not make prior assumptions about the components.

Single tone

[edit]

If one only wants to estimate the frequency of the single loudest pure-tone signal, one can use a pitch detection algorithm.

If the dominant frequency changes over time, then the problem becomes the estimation of the instantaneous frequency as defined in the time–frequency representation. Methods for instantaneous frequency estimation include those based on the Wigner–Ville distribution and higher order ambiguity functions.[11]

If one wants to know all the (possibly complex) frequency components of a received signal (including transmitted signal and noise), one uses a multiple-tone approach.

Multiple tones

[edit]

A typical model for a signal consists of a sum of complex exponentials in the presence of white noise,

.

The power spectral density of is composed of impulse functions in addition to the spectral density function due to noise.

The most common methods for frequency estimation involve identifying the noise subspace to extract these components. These methods are based on eigendecomposition of the autocorrelation matrix into a signal subspace and a noise subspace. After these subspaces are identified, a frequency estimation function is used to find the component frequencies from the noise subspace. The most popular methods of noise subspace based frequency estimation are Pisarenko's method, the multiple signal classification (MUSIC) method, the eigenvector method, and the minimum norm method.

Pisarenko's method
MUSIC
Eigenvector method
Minimum norm method

Example calculation

[edit]

Suppose , from to is a time series (discrete time) with zero mean. Suppose that it is a sum of a finite number of periodic components (all frequencies are positive):

where

The variance of is, for a zero-mean function as above, given by

If these data were samples taken from an electrical signal, this would be its average power (power is energy per unit time, so it is analogous to variance if energy is analogous to the amplitude squared).

Now, for simplicity, suppose the signal extends infinitely in time, so we pass to the limit as If the average power is bounded, which is almost always the case in reality, then the following limit exists and is the variance of the data.

Again, for simplicity, we will pass to continuous time, and assume that the signal extends infinitely in time in both directions. Then these two formulas become

and

The root mean square of is , so the variance of is Hence, the contribution to the average power of coming from the component with frequency is All these contributions add up to the average power of

Then the power as a function of frequency is and its statistical cumulative distribution function will be

is a step function, monotonically non-decreasing. Its jumps occur at the frequencies of the periodic components of , and the value of each jump is the power or variance of that component.

The variance is the covariance of the data with itself. If we now consider the same data but with a lag of , we can take the covariance of with , and define this to be the autocorrelation function of the signal (or data) :

If it exists, it is an even function of If the average power is bounded, then exists everywhere, is finite, and is bounded by , which is the average power or variance of the data.

It can be shown that can be decomposed into periodic components with the same periods as :

This is in fact the spectral decomposition of over the different frequencies, and is related to the distribution of power of over the frequencies: the amplitude of a frequency component of is its contribution to the average power of the signal.

The power spectrum of this example is not continuous, and therefore does not have a derivative, and therefore this signal does not have a power spectral density function. In general, the power spectrum will usually be the sum of two parts: a line spectrum such as in this example, which is not continuous and does not have a density function, and a residue, which is absolutely continuous and does have a density function.

See also

[edit]

References

[edit]
  1. ^ P Stoica and R Moses, Spectral Analysis of Signals, Prentice Hall, 2005.
  2. ^ Welch, P. D. (1967), "The use of Fast Fourier Transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Transactions on Audio and Electroacoustics, AU-15 (2): 70–73, Bibcode:1967ITAE...15...70W, doi:10.1109/TAU.1967.1161901, S2CID 13900622
  3. ^ a b Stoica, Petre; Babu, Prabhu; Li, Jian (January 2011). "New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data". IEEE Transactions on Signal Processing. 59 (1): 35–47. Bibcode:2011ITSP...59...35S. doi:10.1109/TSP.2010.2086452. ISSN 1053-587X. S2CID 15936187.
  4. ^ Stoica, Petre; Li, Jian; Ling, Jun; Cheng, Yubo (April 2009). "Missing data recovery via a nonparametric iterative adaptive approach". 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE. pp. 3369–3372. doi:10.1109/icassp.2009.4960347. ISBN 978-1-4244-2353-8.
  5. ^ Sward, Johan; Adalbjornsson, Stefan Ingi; Jakobsson, Andreas (March 2017). "A generalization of the sparse iterative covariance-based estimator". 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. pp. 3954–3958. doi:10.1109/icassp.2017.7952898. ISBN 978-1-5090-4117-6. S2CID 5640068.
  6. ^ Yardibi, Tarik; Li, Jian; Stoica, Petre; Xue, Ming; Baggeroer, Arthur B. (January 2010). "Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares". IEEE Transactions on Aerospace and Electronic Systems. 46 (1): 425–443. Bibcode:2010ITAES..46..425Y. doi:10.1109/TAES.2010.5417172. hdl:1721.1/59588. ISSN 0018-9251. S2CID 18834345.
  7. ^ Panahi, Ashkan; Viberg, Mats (February 2011). "On the resolution of the LASSO-based DOA estimation method". 2011 International ITG Workshop on Smart Antennas. IEEE. pp. 1–5. doi:10.1109/wsa.2011.5741938. ISBN 978-1-61284-075-8. S2CID 7013162.
  8. ^ a b c d Percival, Donald B.; Walden, Andrew T. (1992). Spectral Analysis for Physical Applications. Cambridge University Press. ISBN 9780521435413.
  9. ^ Burg, J.P. (1967) "Maximum Entropy Spectral Analysis", Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City, Oklahoma.
  10. ^ Hayes, Monson H., Statistical Digital Signal Processing and Modeling, John Wiley & Sons, Inc., 1996. ISBN 0-471-59431-8.
  11. ^ Lerga, Jonatan. "Overview of Signal Instantaneous Frequency Estimation Methods" (PDF). University of Rijeka. Retrieved 22 March 2014.

Further reading

[edit]
龟头上抹什么可以延时 apf值是什么意思 杆菌是什么意思 触霉头是什么意思 六月初九是什么日子
子鼠是什么意思 什么叫醪糟 hm是什么品牌 世界上最小的动物是什么 排骨炖山药有什么功效
mmp是什么意思 豆浆什么时候喝最好 倒挂对身体有什么好处 飞行员妻子有什么待遇 车前草能治什么病
马是什么牌子的车 paba是什么药 拉屎肛门疼是什么原因 各什么各什么 锁骨是什么骨
当演员需要什么条件hcv9jop8ns3r.cn 总胆红素高什么意思hcv8jop4ns8r.cn roma是什么牌子hcv8jop8ns4r.cn 青蛙属于什么类动物hcv7jop4ns8r.cn 小苏打和柠檬酸反应产生什么hcv8jop3ns9r.cn
脑梗是什么原因造成的hcv9jop3ns3r.cn 鳞状上皮内高度病变是什么意思hcv8jop3ns9r.cn 黑枸杞泡水是什么颜色bfb118.com 什么驴技穷成语fenrenren.com 水煮鱼一般用什么鱼hcv8jop0ns4r.cn
乳头凹陷是什么原因hcv8jop2ns3r.cn 肝火旺是什么症状hcv8jop0ns9r.cn 移居改姓始为良是什么意思hcv8jop4ns2r.cn 半月板是什么部位hcv8jop4ns4r.cn ot什么意思naasee.com
timing是什么意思hcv9jop1ns4r.cn 回声不均匀是什么意思hcv8jop2ns9r.cn 足三里在什么位置dayuxmw.com 腰间盘突出是什么原因引起的hcv7jop6ns9r.cn 梦见经血是什么预兆hcv8jop9ns5r.cn
百度