内向什么意思| 一什么孩子| 梦见穿新衣服是什么意思| 方圆是什么意思| 生姜什么时候吃最好| 特别提款权是什么意思| 不完全性右束支传导阻滞是什么意思| 转氨酶高吃什么药效果好| 苍鹰是什么意思| 如何知道自己适合什么发型| 文房四宝是指什么| 跟腱炎什么症状| 香菜什么时候种最合适| 和包是什么| 回流什么意思| 皮炎是什么原因引起的| ptc是什么意思| 例行检查是什么意思| 西瓜为什么是红色的| 孕酮是什么| 为什么放屁特别臭| 为什么三文鱼可以生吃| 阿哥是什么意思| 婴儿增强免疫力吃什么| 孕前检查挂什么科| 双氯芬酸钠缓释片是什么药| 什么不可当| 荨麻疹吃什么药最管用| 技压群雄的意思是什么| 梦见放鞭炮是什么意思| 湍急是什么意思| 垂体催乳素高是什么原因| 巴士是什么意思| 什么时候种玉米| 大便次数多是什么原因| 眉头有痣代表什么| 喝绿豆汤有什么好处| 秋水仙碱是什么| hpv58阳性是什么意思| 桉是什么意思| 一是什么意思| 人为什么有五根手指| 大腿淤青是什么原因| 男性一般检查什么| 5.19是什么星座| robinhood是什么牌子| 金银花有什么作用| pa是什么元素| 有机食品是什么意思| 宝宝喜欢趴着睡觉是什么原因| 身体出虚汗是什么原因| 血沉偏高说明什么| 九牛一毛指什么生肖| xswl是什么意思| 为什么吃荔枝会上火| 女人生气容易得什么病| 忠诚的近义词是什么| 6月23日是什么节日| 虫草是什么| 大什么针| 百香果和什么搭配好喝| 风起云涌是什么意思| 梨子是什么季节的水果| 流产后吃什么| 10.22是什么星座| 头眩晕是什么原因引起的| hrv是什么病毒| 梨状肌综合症吃什么药| 奥利给什么意思| 闫和阎有什么区别| 西瓜不能跟什么一起吃| 洋桔梗的花语是什么| 小便有点红是什么原因| 端午节吃什么| 赭石色是什么颜色| 尿频尿多是什么原因| 五味子什么味道| 梦见在天上飞是什么意思| 吃什么可以缓解痛经| 蟑螂喜欢什么样的环境| 学英语先从什么学起| 香芋是什么| 雨伞代表什么数字| 脱发是什么原因引起的| 业已毕业是什么意思| 为什么手术前要禁食禁水| 大便不调是什么意思| 嘴唇出血是什么原因| 鞭长莫及是什么意思| 卡码是什么意思| 脖子痛挂什么科| 什么是神话故事| 摩羯座什么性格| 狗狗拉虫子又细又长吃什么药| c蛋白反应高是什么原因| 什么冠禽兽| 周杰伦有什么病| 洁面膏和洗面奶有什么区别| 松鼠咬人后为什么会死| 2月7日什么星座| 大姨妈血块多是什么原因| 推背有什么好处和坏处| 酒精过敏有什么症状| 什么叫肾阳虚肾阴虚| 女朋友生日送什么| 夏天什么面料最凉快| 什么人一年只工作一天脑筋急转弯| 什么有洞天| 雨伞代表什么数字| 引产是什么意思| 天生丽质是什么生肖| 霸屏是什么意思| 凝血因子是什么| 鸡枞是什么| 怀孕初期有什么症状| 脊柱侧弯挂什么科| diff是什么意思| 炸东西用什么油| 蜥蜴什么动物| 刚愎自用代表什么生肖| 发蜡是什么| 一个叉念什么| 尿酸低会引发什么症状| 教唆是什么意思| 嗓子疼可以吃什么水果| 排卵期是什么| 梦见梳头发是什么意思| 左束支传导阻滞是什么意思| 常流鼻血是什么原因| 预检是什么意思| 芋圆是什么| 宿醉是什么意思| 奶奶的奶奶叫什么| 娘是什么意思| 面部神经挂什么科| 向日葵花代表什么意思| 贪嗔痴是什么意思| 花卉是什么意思| rover是什么意思| 蝴蝶是什么变的| 夹层是什么意思| 女性下体长什么样| 法学是干什么的| 橙色预警是什么级别| 白马王子是什么意思| 艺五行属什么| 雨花茶是什么茶| 爽约是什么意思| 一什么明月| 胃泌素高是什么原因| 欣喜若狂是什么意思| 眉毛上长痘是什么原因| 十二月九号是什么星座| 朝三暮四是什么生肖| 脚心痒是什么原因| 舌系带挂什么科| 传字五行属什么| 肌酐高吃什么好| 养字五行属什么| 爆菊是什么意思| 高攀是什么意思| 口牙是什么意思| 卡姿兰属于什么档次| 8月15是什么星座| ac代表什么意思| 血常规一般查什么病| 吉尼斯是什么意思| 香港代购什么东西好| 喝中药尿黄是什么原因| 阿堵物是什么意思| 吃什么东西补铁| 胆固醇低是什么原因| 骨折的人吃什么恢复快| 魔改是什么意思| 长期喝酒对身体有什么危害| 父亲坐过牢对孩子有什么影响| 拉肚子可以吃什么菜| 黄腔是什么意思| 梦见下大雨是什么意思| 脑病科是看什么病的| 透析是什么原理| 深渊什么意思| 相位是什么| 为什么手会不自觉的抖| 大口什么字| sls是什么化学成分| 瑄五行属什么| 高是什么意思| 脚底痛是什么原因| 宝宝发烧手脚冰凉是什么原因| MECT是什么| 女人右下巴有痣代表什么| 干将是什么意思| 大佬什么意思| 拉杆箱什么材质好| 7月15是什么星座的| 燕麦是什么| 深圳市市长什么级别| 小三最怕什么| 然五行属性是什么| 梦见鬼是什么意思| 倾向是什么意思| 八月底什么星座| 比利时用什么货币| 减肥晚上吃什么水果| 女性寒性体质喝什么茶| 妒忌是什么意思| 什么呀| 生气什么什么| 角色扮演是什么意思| 梦见孩子拉粑粑是什么意思| 十九岁属什么| 731是什么意思| 2011属什么生肖| 爬行对身体有什么好处| 多元是什么意思| 小孩子上火吃什么能降火| 治骨质疏松打什么针| 白带豆腐渣状是什么原因造成的| 牛子什么意思| 足下生辉是什么意思| 为什么叫985大学| 宋江代表什么生肖| 麒麟儿是什么意思| 三伏天是什么时候| 蜂蜜和什么不能一起吃| 睾丸皮痒用什么药膏| 孕妇过敏可以用什么药| 腿肿吃什么药| ipv是什么疫苗| 硝酸咪康唑乳膏和酮康唑乳膏有什么区别| 12月3号是什么星座| 梦到活人死了是什么预兆| 穷搬家富挪坟是什么意思| 登字五行属什么| ipv是什么| 什么牌子的燃气灶质量好| 为什么不能踩死蜈蚣| 立碑有什么讲究和忌讳| 熬夜 吃什么| 喝豆浆有什么好处和坏处| 红霉素软膏有什么作用| 洛神花茶有什么功效| 哈吉斯牌子是什么档次| 上午十点是什么时辰| 月经量少吃什么调理快| 阁老是什么意思| 农历六月初六是什么星座| 什么是天丝| 望尘莫及的及是什么意思| 为什么总是放屁| 甲状腺炎吃什么药好得快| 268数字代表什么意思| 胰腺炎适合吃什么食物| 今年65岁属什么生肖| 卡介苗预防什么疾病| 违反禁令标志指示是什么意思| 今天生日什么星座| 侏罗纪是什么意思| 我宣你是什么意思| 小孩睡不着觉是什么原因| 吃什么长个子最快| 规培结束后是什么医生| 尿毒症有些什么症状| 百度Jump to content

河北燕郊车主"摆渡进京"系误读 凸显拥堵痛点

From Wikipedia, the free encyclopedia
百度 去年11月,第七届“西湖城市学金奖”征集的点子《如何破解小学生“三点半难题”》提出让大学生参与解决“三点半难题”,并给出了具体的操作建议,得到“两奖”专家评委会主席潘云鹤在内的30余位知名专家的高度评价,认为具有重要现实意义,从8695个点子中脱颖而出获得金奖。

Symmetry of a 5×5 matrix

In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,

Because equal matrices have equal dimensions, only square matrices can be symmetric.

The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if denotes the entry in the th row and th column then

for all indices and

Every square diagonal matrix is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative.

In linear algebra, a real symmetric matrix represents a self-adjoint operator[1] represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix refers to one which has real-valued entries. Symmetric matrices appear naturally in a variety of applications, and typical numerical linear algebra software makes special accommodations for them.

Example

[edit]

The following matrix is symmetric: Since .

Properties

[edit]

Basic properties

[edit]
  • The sum and difference of two symmetric matrices is symmetric.
  • This is not always true for the product: given symmetric matrices and , then is symmetric if and only if and commute, i.e., if .
  • For any integer , is symmetric if is symmetric.
  • Rank of a symmetric matrix is equal to the number of non-zero eigenvalues of .

Decomposition into symmetric and skew-symmetric

[edit]

Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let denote the space of matrices. If denotes the space of symmetric matrices and the space of skew-symmetric matrices then and , i.e. where denotes the direct sum. Let then

Notice that and . This is true for every square matrix with entries from any field whose characteristic is different from 2.

A symmetric matrix is determined by scalars (the number of entries on or above the main diagonal). Similarly, a skew-symmetric matrix is determined by scalars (the number of entries above the main diagonal).

Matrix congruent to a symmetric matrix

[edit]

Any matrix congruent to a symmetric matrix is again symmetric: if is a symmetric matrix, then so is for any matrix .

Symmetry implies normality

[edit]

A (real-valued) symmetric matrix is necessarily a normal matrix.

Real symmetric matrices

[edit]

Denote by the standard inner product on . The real matrix is symmetric if and only if

Since this definition is independent of the choice of basis, symmetry is a property that depends only on the linear operator A and a choice of inner product. This characterization of symmetry is useful, for example, in differential geometry, for each tangent space to a manifold may be endowed with an inner product, giving rise to what is called a Riemannian manifold. Another area where this formulation is used is in Hilbert spaces.

The finite-dimensional spectral theorem says that any symmetric matrix whose entries are real can be diagonalized by an orthogonal matrix. More explicitly: For every real symmetric matrix there exists a real orthogonal matrix such that is a diagonal matrix. Every real symmetric matrix is thus, up to choice of an orthonormal basis, a diagonal matrix.

If and are real symmetric matrices that commute, then they can be simultaneously diagonalized by an orthogonal matrix:[2] there exists a basis of such that every element of the basis is an eigenvector for both and .

Every real symmetric matrix is Hermitian, and therefore all its eigenvalues are real. (In fact, the eigenvalues are the entries in the diagonal matrix (above), and therefore is uniquely determined by up to the order of its entries.) Essentially, the property of being symmetric for real matrices corresponds to the property of being Hermitian for complex matrices.

Complex symmetric matrices

[edit]

A complex symmetric matrix can be 'diagonalized' using a unitary matrix: thus if is a complex symmetric matrix, there is a unitary matrix such that is a real diagonal matrix with non-negative entries. This result is referred to as the Autonne–Takagi factorization. It was originally proved by Léon Autonne (1915) and Teiji Takagi (1925) and rediscovered with different proofs by several other mathematicians.[3][4] In fact, the matrix is Hermitian and positive semi-definite, so there is a unitary matrix such that is diagonal with non-negative real entries. Thus is complex symmetric with real. Writing with and real symmetric matrices, . Thus . Since and commute, there is a real orthogonal matrix such that both and are diagonal. Setting (a unitary matrix), the matrix is complex diagonal. Pre-multiplying by a suitable diagonal unitary matrix (which preserves unitarity of ), the diagonal entries of can be made to be real and non-negative as desired. To construct this matrix, we express the diagonal matrix as . The matrix we seek is simply given by . Clearly as desired, so we make the modification . Since their squares are the eigenvalues of , they coincide with the singular values of . (Note, about the eigen-decomposition of a complex symmetric matrix , the Jordan normal form of may not be diagonal, therefore may not be diagonalized by any similarity transformation.)

Decomposition

[edit]

Using the Jordan normal form, one can prove that every square real matrix can be written as a product of two real symmetric matrices, and every square complex matrix can be written as a product of two complex symmetric matrices.[5]

Every real non-singular matrix can be uniquely factored as the product of an orthogonal matrix and a symmetric positive definite matrix, which is called a polar decomposition. Singular matrices can also be factored, but not uniquely.

Cholesky decomposition states that every real positive-definite symmetric matrix is a product of a lower-triangular matrix and its transpose,

If the matrix is symmetric indefinite, it may be still decomposed as where is a permutation matrix (arising from the need to pivot), a lower unit triangular matrix, and is a direct sum of symmetric and blocks, which is called Bunch–Kaufman decomposition [6]

A general (complex) symmetric matrix may be defective and thus not be diagonalizable. If is diagonalizable it may be decomposed as where is an orthogonal matrix , and is a diagonal matrix of the eigenvalues of . In the special case that is real symmetric, then and are also real. To see orthogonality, suppose and are eigenvectors corresponding to distinct eigenvalues , . Then

Since and are distinct, we have .

Hessian

[edit]

Symmetric matrices of real functions appear as the Hessians of twice differentiable functions of real variables (the continuity of the second derivative is not needed, despite common belief to the opposite[7]).

Every quadratic form on can be uniquely written in the form with a symmetric matrix . Because of the above spectral theorem, one can then say that every quadratic form, up to the choice of an orthonormal basis of , "looks like" with real numbers . This considerably simplifies the study of quadratic forms, as well as the study of the level sets which are generalizations of conic sections.

This is important partly because the second-order behavior of every smooth multi-variable function is described by the quadratic form belonging to the function's Hessian; this is a consequence of Taylor's theorem.

Symmetrizable matrix

[edit]

An matrix is said to be symmetrizable if there exists an invertible diagonal matrix and symmetric matrix such that

The transpose of a symmetrizable matrix is symmetrizable, since and is symmetric. A matrix is symmetrizable if and only if the following conditions are met:

  1. implies for all
  2. for any finite sequence

See also

[edit]

Other types of symmetry or pattern in square matrices have special names; see for example:

See also symmetry in mathematics.

Notes

[edit]
  1. ^ Jesús Rojo García (1986). álgebra lineal (in Spanish) (2nd ed.). Editorial AC. ISBN 84-7288-120-2.
  2. ^ Bellman, Richard (1997). Introduction to Matrix Analysis (2nd ed.). SIAM. ISBN 08-9871-399-4.
  3. ^ Horn & Johnson 2013, pp. 263, 278
  4. ^ See:
  5. ^ Bosch, A. J. (1986). "The factorization of a square matrix into two symmetric matrices". American Mathematical Monthly. 93 (6): 462–464. doi:10.2307/2323471. JSTOR 2323471.
  6. ^ Golub, G.H.; van Loan, C.F. (1996). Matrix Computations. Johns Hopkins University Press. ISBN 0-8018-5413-X. OCLC 34515797.
  7. ^ Dieudonné, Jean A. (1969). "Theorem (8.12.2)". Foundations of Modern Analysis. Academic Press. p. 180. ISBN 0-12-215550-5. OCLC 576465.

References

[edit]
  • Horn, Roger A.; Johnson, Charles R. (2013), Matrix analysis (2nd ed.), Cambridge University Press, ISBN 978-0-521-54823-6
[edit]
老放屁是什么情况 邪魅一笑是什么意思 1983是什么年 眼睛肿什么原因 硬度不够吃什么药调理
小仓鼠吃什么 结婚六十年是什么婚 喝什么提神 年轻人白头发是什么原因引起的 pp和pc材质有什么区别
置换补贴什么意思 男人精液少是什么原因 让平是什么意思 眩晕是什么原因 肽对人体有什么好处
争奇斗艳的斗是什么意思 8月18日什么星座 心脏彩超fs是什么意思 喝什么解酒最快最有效 smeg什么品牌
美女是什么意思hcv9jop6ns2r.cn 咽喉炎有什么症状hcv9jop6ns2r.cn 12月6号是什么星座hcv9jop6ns4r.cn 怀孕初期头晕是什么原因hcv8jop9ns9r.cn 光敏反应是什么意思hcv8jop5ns0r.cn
m是什么码hcv7jop6ns1r.cn 嗜血是什么意思hcv7jop9ns9r.cn 水逆是什么hcv8jop1ns5r.cn jordan是什么牌子jinxinzhichuang.com 咳嗽什么原因引起的hcv8jop7ns9r.cn
c2可以开什么车hcv9jop2ns8r.cn 双生是什么意思hcv8jop4ns0r.cn 检查脑袋应该挂什么科hcv8jop7ns3r.cn 持之以恒的恒是什么意思hcv8jop6ns5r.cn 喝什么茶对肝脏好hcv8jop4ns3r.cn
胃酸过多吃点什么食物比较好hanqikai.com 囊肿长什么样子图片hcv9jop3ns3r.cn 吃什么容易长肉hcv9jop5ns9r.cn 猪砂是什么东西bjcbxg.com tdp是什么hcv8jop9ns1r.cn
百度