香菜什么时候种| 皮草是什么意思| 人出汗多是什么原因| 什么叫执行力| 女人的动物是什么生肖| 内敛什么意思| 孕妇吃红薯对胎儿有什么好处| 什么是证件照| 瑞士移民需要什么条件| 图谋不轨什么意思| 离岗是什么意思| 系带断裂有什么影响吗| 多动症是什么| 微商是什么意思| 流脑是什么病| 属马的人佩戴什么招财| 蛊虫是什么| qy是什么意思| 北戴河是什么海| 阳痿早泄吃什么药最好| 雾里看花是什么意思| pct是什么意思| 甲状腺不能吃什么食物| 利多卡因是什么| 举案齐眉什么意思| 教授是什么级别| 未时是什么时候| 淼怎么读什么意思| 养尊处优是什么意思| 吃什么容易怀女儿| 下体瘙痒是什么原因| 考试前不能吃什么| 喝什么醒酒| 鸡粉是什么| 少许纤维灶是什么意思| 眼睛疲劳用什么眼药水| 葛根粉有什么功效| charcoal是什么颜色| 贫血要吃什么| 肝风是什么意思| 十全十美指什么生肖| 韩红和张一山什么关系| 羊脑炎什么症状怎么治| 牙齿过敏吃什么药| 吃什么补肾虚| 乌鸡汤放什么材料| 9月13日是什么纪念日| 桂圆什么时候上市| 什么是正太| 鸡痘用什么药效果好| 湿疹有什么忌口的食物| 什么人不适合艾灸| 吃什么能改善睡眠| 红色加绿色等于什么颜色| 为什么下雨会打雷| 尼姑庵是什么意思| 尿素氮偏高是什么意思| 乳头状瘤是什么病| 为什么腋下会长小肉揪| hcd是什么意思| 心肌炎吃什么药效果好| 小孩脸上有白斑是什么原因| 梦见染头发是什么意思| 来福是什么意思| 牛马是什么意思| 散瞳后需要注意什么| 耳朵里痒是什么原因| 天麻起什么作用| 补肾吃什么药好| 胜字五行属什么| 淘米水洗脸有什么好处| 肉桂茶适合什么人喝| 五点多是什么时辰| 1981属什么生肖| 芒果可以做什么美食| 吴京为什么看上谢楠| 晚上七点多是什么时辰| 乌冬面是什么做的| 飞机杯什么感觉| 上房是什么意思| 手抖吃什么药马上控制| 体毛旺盛是什么原因| 自强不息的息是什么意思| 舌尖疼吃什么药| 乳酸菌素片什么时候吃| 3月27日什么星座| 突然便秘是什么原因引起的| 什么是知青| 牛油果坏了是什么样| 耵聍是什么| 女生被操是什么感觉| 画像是什么意思| 敏感肌是什么样的| 片仔癀是什么| 什么是碱性食物有哪些| 宫颈癌早期什么症状| 农历七月份是什么星座| 恬静是什么意思| 孔雀男是什么意思| 伊朗用什么语言| sk是什么| 治疗脚气用什么药| 八四年属什么生肖| 前列腺按摩什么感觉| 幻觉幻听是什么症状| 血肿不治疗有什么后果| 满是什么结构| 情愫什么意思| 反文旁和什么有关| 山楂搭配什么泡水喝好| 贫血吃什么食物| 什么菜降血压效果最好| 尿蛋白质弱阳性是什么意思| 阴历3月是什么星座| 什么叫| 女人五行缺水是什么命| 吃中药不能吃什么东西| 轻微骨裂了有什么表现| 女性肛门坠胀看什么科| 型式检验是什么意思| 正常舌头是什么颜色| 变化不著是什么意思| 吃什么降血压的食物| 方脸适合什么发型| 眼睛看东西变形扭曲是什么原因| 养肝护肝吃什么药| 梦见陌生人死了是什么意思| 糖醋里脊是什么肉做的| 平起平坐是什么动物| 痰湿吃什么药| 胃息肉是什么原因造成的| 牛在五行中属什么| 吃什么东西可以降压| 屁股疼是什么原因| 咳嗽有绿痰是什么原因| 嘎嘎嘎是什么意思| 吃什么变聪明| 脉滑是什么意思| 脚底出汗是什么原因| 母亲节送给妈妈什么礼物| 女性支原体阳性是什么意思| 上火喉咙痛吃什么药| 吉祥是什么生肖| 赛诺菲是什么药| 社会是什么意思| 什么是| 北京五行属什么| 身上长湿疹是什么原因导致| 霉菌性炎症用什么药效果最好| 头皮起疙瘩是什么原因| carrots是什么意思| 呼吸衰竭是什么意思| 倒签是什么意思| 晚上十一点半是什么时辰| 静脉是什么意思| 胆汁淤积症有什么症状| 皇太后是皇上的什么人| 小孩走路迟是什么原因| 平板撑有什么作用| 雷锋原名叫什么| 披靡是什么意思| 白细胞计数高是什么原因| 首套房有什么优惠政策| 牙龈一直肿不消什么原因| 龟头炎什么症状| 谍影重重4为什么换主角| ao是什么| 吃虾有什么好处| 趣味是什么意思| 疣是一种什么病| 审美疲劳是什么意思| 庶子什么意思| 饮片是什么意思| 阻断是什么意思| 三点水一个条读什么| 天狗是什么意思| 胸膜炎吃什么药好| 什么叫脂肪瘤| 什么才叫幸福| mm代表什么单位| 无锡有什么好玩的| 鹅喜欢吃什么食物| 黄芪是什么样子的| 膝盖疼挂什么科室| ti是什么元素| 检查肺挂什么科| 一什么便什么造句| 牛郎叫什么名字| 吃什么能养胃| 空调抽真空是什么意思| girls是什么意思| 刷墙的白色涂料叫什么| 为什么会有子宫肌瘤| 开市是什么意思| 鸿运当头是什么意思| 口腔溃疡缺乏什么维生素| 治飞蚊症用什么眼药水| 婴儿增强免疫力吃什么| 大便不成形吃什么药| 庆生是什么意思| 仙灵脾又叫什么| 梦见和死去的亲人吵架是什么意思| 孕妇咳嗽可以吃什么药| butter是什么意思| 8.9是什么星座| 指征是什么意思| 吃什么能降尿酸| 9月11号是什么星座| 双重否定句是什么意思| 嘴臭是什么原因引起的| 半元音是什么意思| 数目是什么意思| 遣返回国有什么后果| 吃什么补充胶原蛋白| 红细胞压积偏高是什么意思| 伊朗用什么语言| 荨麻疹涂什么药膏| 侯赛因是什么意思| 常喝普洱茶有什么好处| 吃阿胶对女人有什么好处| 霜对什么| r值是什么意思| 词又被称为什么| 胆囊炎有什么症状| 五级职员是什么级别| 肚脐右边是什么器官| 什么烟最便宜| 什么地诉说| 麻雀吃什么| 刘备和刘表什么关系| 为什么同房后小腹隐隐作痛| 极光是什么意思| 80属什么| 寒疾现代叫什么病| 一边什么一边什么| 膝盖疼吃什么药好| 卵泡生成素高是什么原因| 流清口水是什么原因| 丹参是什么样子的图片| 女人吃什么新陈代谢快| 不含而立是什么意思| 腹部胀痛什么原因| 经常上火口腔溃疡是什么原因| 蛇的眼睛是什么颜色| DNA是什么意思啊| 禾末念什么| 腹部彩超挂什么科| 为什么疤痕会增生| 值机是什么| 是什么表情包| 拉屎拉出血是什么原因| cpb是什么意思| 5月26是什么星座| 股骨头坏死有什么症状| 奶篓子是什么意思| 胆怯是什么意思| 1995年是什么年| 低钠有什么症状和危害| 4月26是什么星座| 腹泻吃什么消炎药| 板带是什么| l是什么单位| 吃饭快了有什么坏处| 潜血弱阳性什么意思| 百度Jump to content

擦伤挂什么科

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by Jacobolus (talk | contribs) at 21:02, 19 June 2025 (url duplicates doi). The present address (URL) is a permanent link to this version.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Unsolved problem in computer science
Can integer factorization be solved in polynomial time on a classical computer?
百度   附抽签分档及世界排名  第1档:俄罗斯(65,东道主),德国(1),巴西(2),葡萄牙(3),阿根廷(4),比利时(5),波兰(6),法国(7)  第2档:西班牙(8),秘鲁(10),瑞士(11),英格兰(12),哥伦比亚(13),墨西哥(16),乌拉圭(17),克罗地亚(18)  第3档:丹麦(19),冰岛(21),哥斯达黎加(22),瑞典(25),突尼斯(28),埃及(30),塞内加尔(32),伊朗(34)  第4档:塞尔维亚(38),尼日利亚(41),澳大利亚(43),日本(44),摩洛哥(48),巴拿马(49),韩国(62),沙特阿拉伯(63)

In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3?·?5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3?·?20 = 3?·?(5?·?4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.

To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient. A prime factorization algorithm typically involves testing whether each factor is prime each time a factor is found.

When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA public-key encryption and the RSA digital signature.[1] Many areas of mathematics and computer science have been brought to bear on this problem, including elliptic curves, algebraic number theory, and quantum computing.

Not all numbers of a given length are equally hard to factor. The hardest instances of these problems (for currently known techniques) are semiprimes, the product of two prime numbers. When they are both large, for instance more than two thousand bits long, randomly chosen, and about the same size (but not too close, for example, to avoid efficient factorization by Fermat's factorization method), even the fastest prime factorization algorithms on the fastest classical computers can take enough time to make the search impractical; that is, as the number of digits of the integer being factored increases, the number of operations required to perform the factorization on any classical computer increases drastically.

Many cryptographic protocols are based on the presumed difficulty of factoring large composite integers or a related problem –for example, the RSA problem. An algorithm that efficiently factors an arbitrary integer would render RSA-based public-key cryptography insecure.

Prime decomposition

[edit]
Prime decomposition of n = 864 as 25 × 33

By the fundamental theorem of arithmetic, every positive integer has a unique prime factorization. (By convention, 1 is the empty product.) Testing whether the integer is prime can be done in polynomial time, for example, by the AKS primality test. If composite, however, the polynomial time tests give no insight into how to obtain the factors.

Given a general algorithm for integer factorization, any integer can be factored into its constituent prime factors by repeated application of this algorithm. The situation is more complicated with special-purpose factorization algorithms, whose benefits may not be realized as well or even at all with the factors produced during decomposition. For example, if n = 171 × p × q where p < q are very large primes, trial division will quickly produce the factors 3 and 19 but will take p divisions to find the next factor. As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will begin with ?n? = 18848997159 which immediately yields b = a2 ? n = 4 = 2 and hence the factors a ? b = 18848997157 and a + b = 18848997161. While these are easily recognized as composite and prime respectively, Fermat's method will take much longer to factor the composite number because the starting value of ?18848997157? = 137292 for a is a factor of 10 from 1372933.

Current state of the art

[edit]

Among the b-bit numbers, the most difficult to factor in practice using existing algorithms are those semiprimes whose factors are of similar size. For this reason, these are the integers used in cryptographic applications.

In 2019, a 240-digit (795-bit) number (RSA-240) was factored by a team of researchers including Paul Zimmermann, utilizing approximately 900 core-years of computing power.[2] These researchers estimated that a 1024-bit RSA modulus would take about 500 times as long.[3]

The largest such semiprime yet factored was RSA-250, an 829-bit number with 250 decimal digits, in February 2020. The total computation time was roughly 2700 core-years of computing using Intel Xeon Gold 6130 at 2.1 GHz. Like all recent factorization records, this factorization was completed with a highly optimized implementation of the general number field sieve run on hundreds of machines.

Time complexity

[edit]

No algorithm has been published that can factor all integers in polynomial time, that is, that can factor a b-bit number n in time O(bk) for some constant k. Neither the existence nor non-existence of such algorithms has been proved, but it is generally suspected that they do not exist.[4][5]

There are published algorithms that are faster than O((1 + ε)b) for all positive ε, that is, sub-exponential. As of 2022, the algorithm with best theoretical asymptotic running time is the general number field sieve (GNFS), first published in 1993,[6] running on a b-bit number n in time:

For current computers, GNFS is the best published algorithm for large n (more than about 400 bits). For a quantum computer, however, Peter Shor discovered an algorithm in 1994 that solves it in polynomial time. Shor's algorithm takes only O(b3) time and O(b) space on b-bit number inputs. In 2001, Shor's algorithm was implemented for the first time, by using NMR techniques on molecules that provide seven qubits.[7]

In order to talk about complexity classes such as P, NP, and co-NP, the problem has to be stated as a decision problem.

Decision problem (Integer factorization)For every natural numbers and , does n have a factor smaller than k besides 1?

It is known to be in both NP and co-NP, meaning that both "yes" and "no" answers can be verified in polynomial time. An answer of "yes" can be certified by exhibiting a factorization n = d(?n/d?) with dk. An answer of "no" can be certified by exhibiting the factorization of n into distinct primes, all larger than k; one can verify their primality using the AKS primality test, and then multiply them to obtain n. The fundamental theorem of arithmetic guarantees that there is only one possible string of increasing primes that will be accepted, which shows that the problem is in both UP and co-UP.[8] It is known to be in BQP because of Shor's algorithm.

The problem is suspected to be outside all three of the complexity classes P, NP-complete,[9] and co-NP-complete. It is therefore a candidate for the NP-intermediate complexity class.

In contrast, the decision problem "Is n a composite number?" (or equivalently: "Is n a prime number?") appears to be much easier than the problem of specifying factors of n. The composite/prime problem can be solved in polynomial time (in the number b of digits of n) with the AKS primality test. In addition, there are several probabilistic algorithms that can test primality very quickly in practice if one is willing to accept a vanishingly small possibility of error. The ease of primality testing is a crucial part of the RSA algorithm, as it is necessary to find large prime numbers to start with.

Factoring algorithms

[edit]

Special-purpose

[edit]

A special-purpose factoring algorithm's running time depends on the properties of the number to be factored or on one of its unknown factors: size, special form, etc. The parameters which determine the running time vary among algorithms.

An important subclass of special-purpose factoring algorithms is the Category 1 or First Category algorithms, whose running time depends on the size of smallest prime factor. Given an integer of unknown form, these methods are usually applied before general-purpose methods to remove small factors.[10] For example, naive trial division is a Category 1 algorithm.

General-purpose

[edit]

A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm,[10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.

Other notable algorithms

[edit]

Heuristic running time

[edit]

In number theory, there are many integer factoring algorithms that heuristically have expected running time

in little-o and L-notation. Some examples of those algorithms are the elliptic curve method and the quadratic sieve. Another such algorithm is the class group relations method proposed by Schnorr,[11] Seysen,[12] and Lenstra,[13] which they proved only assuming the unproved generalized Riemann hypothesis.

Rigorous running time

[edit]

The Schnorr–Seysen–Lenstra probabilistic algorithm has been rigorously proven by Lenstra and Pomerance[14] to have expected running time Ln[?1/2?, 1+o(1)] by replacing the GRH assumption with the use of multipliers. The algorithm uses the class group of positive binary quadratic forms of discriminant Δ denoted by GΔ. GΔ is the set of triples of integers (a, b, c) in which those integers are relative prime.

Schnorr–Seysen–Lenstra algorithm

[edit]

Given an integer n that will be factored, where n is an odd positive integer greater than a certain constant. In this factoring algorithm the discriminant Δ is chosen as a multiple of n, Δ = ?dn, where d is some positive multiplier. The algorithm expects that for one d there exist enough smooth forms in GΔ. Lenstra and Pomerance show that the choice of d can be restricted to a small set to guarantee the smoothness result.

Denote by PΔ the set of all primes q with Kronecker symbol (?Δ/q?) = 1. By constructing a set of generators of GΔ and prime forms fq of GΔ with q in PΔ a sequence of relations between the set of generators and fq are produced. The size of q can be bounded by c0(log|Δ|)2 for some constant c0.

The relation that will be used is a relation between the product of powers that is equal to the neutral element of GΔ. These relations will be used to construct a so-called ambiguous form of GΔ, which is an element of GΔ of order dividing 2. By calculating the corresponding factorization of Δ and by taking a gcd, this ambiguous form provides the complete prime factorization of n. This algorithm has these main steps:

Let n be the number to be factored.

  1. Let Δ be a negative integer with Δ = ?dn, where d is a multiplier and Δ is the negative discriminant of some quadratic form.
  2. Take the t first primes p1 = 2, p2 = 3, p3 = 5, ..., pt, for some tN.
  3. Let fq be a random prime form of GΔ with (?Δ/q?) = 1.
  4. Find a generating set X of GΔ.
  5. Collect a sequence of relations between set X and {fq : qPΔ} satisfying:
  6. Construct an ambiguous form (a, b, c) that is an element fGΔ of order dividing 2 to obtain a coprime factorization of the largest odd divisor of Δ in which Δ = ?4ac or Δ = a(a ? 4c) or Δ = (b ? 2a)(b + 2a).
  7. If the ambiguous form provides a factorization of n then stop, otherwise find another ambiguous form until the factorization of n is found. In order to prevent useless ambiguous forms from generating, build up the 2-Sylow group Sll2(Δ) of G(Δ).

To obtain an algorithm for factoring any positive integer, it is necessary to add a few steps to this algorithm such as trial division, and the Jacobi sum test.

Expected running time

[edit]

The algorithm as stated is a probabilistic algorithm as it makes random choices. Its expected running time is at most Ln[?1/2?, 1+o(1)].[14]

See also

[edit]

Notes

[edit]
  1. ^ Lenstra, Arjen K. (2011), "Integer Factoring", in van Tilborg, Henk C. A.; Jajodia, Sushil (eds.), Encyclopedia of Cryptography and Security, Boston: Springer, pp. 611–618, doi:10.1007/978-1-4419-5906-5_455, ISBN 978-1-4419-5905-8
  2. ^ "[Cado-nfs-discuss] 795-bit factoring and discrete logarithms". Archived from the original on 2025-08-07.
  3. ^ Kleinjung, Thorsten; Aoki, Kazumaro; Franke, Jens; Lenstra, Arjen K.; Thomé, Emmanuel; Bos, Joppe W.; Gaudry, Pierrick; Kruppa, Alexander; Montgomery, Peter L.; Osvik, Dag Arne; te Riele, Herman J. J.; Timofeev, Andrey; Zimmermann, Paul (2010). "Factorization of a 768-Bit RSA Modulus" (PDF). In Rabin, Tal (ed.). Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings. Lecture Notes in Computer Science. Vol. 6223. Springer. pp. 333–350. doi:10.1007/978-3-642-14623-7_18. ISBN 978-3-642-14622-0.
  4. ^ Krantz, Steven G. (2011), The Proof is in the Pudding: The Changing Nature of Mathematical Proof, New York: Springer, p. 203, doi:10.1007/978-0-387-48744-1, ISBN 978-0-387-48908-7, MR 2789493
  5. ^ Arora, Sanjeev; Barak, Boaz (2009), Computational complexity, Cambridge: Cambridge University Press, p. 230, doi:10.1017/CBO9780511804090, ISBN 978-0-521-42426-4, MR 2500087, S2CID 215746906
  6. ^ Buhler, J. P.; Lenstra, H. W. Jr.; Pomerance, Carl (1993). "Factoring integers with the number field sieve". The development of the number field sieve. Lecture Notes in Mathematics. Vol. 1554. Springer. pp. 50–94. doi:10.1007/BFb0091539. hdl:1887/2149. ISBN 978-3-540-57013-4. Retrieved 12 March 2021.
  7. ^ Vandersypen, Lieven M. K.; et al. (2001). "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance". Nature. 414 (6866): 883–887. arXiv:quant-ph/0112176. Bibcode:2001Natur.414..883V. doi:10.1038/414883a. PMID 11780055. S2CID 4400832.
  8. ^ Lance Fortnow (2025-08-07). "Computational Complexity Blog: Complexity Class of the Week: Factoring".
  9. ^ Goldreich, Oded; Wigderson, Avi (2008), "IV.20 Computational Complexity", in Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.), The Princeton Companion to Mathematics, Princeton, New Jersey: Princeton University Press, pp. 575–604, ISBN 978-0-691-11880-2, MR 2467561. See in particular p. 583.
  10. ^ a b David Bressoud and Stan Wagon (2000). A Course in Computational Number Theory. Key College Publishing/Springer. pp. 168–69. ISBN 978-1-930190-10-8.
  11. ^ Schnorr, Claus P. (1982). "Refined analysis and improvements on some factoring algorithms". Journal of Algorithms. 3 (2): 101–127. doi:10.1016/0196-6774(82)90012-8. MR 0657269. Archived from the original on September 24, 2017.
  12. ^ Seysen, Martin (1987). "A probabilistic factorization algorithm with quadratic forms of negative discriminant". Mathematics of Computation. 48 (178): 757–780. doi:10.1090/S0025-5718-1987-0878705-X. MR 0878705.
  13. ^ Lenstra, Arjen K (1988). "Fast and rigorous factorization under the generalized Riemann hypothesis" (PDF). Indagationes Mathematicae. 50 (4): 443–454. doi:10.1016/S1385-7258(88)80022-2.
  14. ^ a b Lenstra, H. W.; Pomerance, Carl (July 1992). "A Rigorous Time Bound for Factoring Integers" (PDF). Journal of the American Mathematical Society. 5 (3): 483–516. doi:10.1090/S0894-0347-1992-1137100-0. MR 1137100.

References

[edit]
[edit]
普洱茶是什么茶类 猫藓长什么样 膀胱炎吃什么药好得快 减肥期间适合喝什么酒 什么是1型和2型糖尿病
家庭出身填什么 鼓的偏旁部首是什么 关节炎用什么药最好 回民为什么不能吃猪肉 心肌缺血什么症状
张力是什么意思 芒果过敏吃什么药 广州为什么叫羊城 春天的花开秋天的风是什么歌 飞机打多了会有什么后果
七月4号是什么星座 月牙是什么意思 夜间睡觉流口水是什么原因 梦到自己老公出轨是什么意思 为什么会得偏头痛
朝什么暮什么hcv9jop8ns2r.cn 5月15日是什么星座hcv8jop3ns0r.cn 什么动什么动hcv8jop6ns5r.cn 三点水一个条读什么hcv8jop5ns6r.cn 为什么会晕血sanhestory.com
金字旁有什么字hcv8jop8ns9r.cn 什么是杀青hcv8jop1ns7r.cn 子宫肌瘤都有什么症状0735v.com 尿多是什么原因女性hcv8jop8ns7r.cn 花中隐士是什么花hcv8jop7ns2r.cn
早上打嗝是什么原因呢hcv7jop9ns1r.cn 喝苦丁茶有什么好处520myf.com 1975年属兔五行属什么hcv8jop0ns5r.cn 六月六是什么节hcv8jop6ns9r.cn 硫酸羟氯喹片治什么病hcv7jop6ns8r.cn
氨是什么gysmod.com 一见倾心什么意思hcv9jop1ns3r.cn 胸疼是什么原因引起的hcv7jop5ns5r.cn 核磁共振和ct有什么区别hcv7jop5ns2r.cn 狂犬疫苗挂什么科creativexi.com
百度