tomboy是什么意思| b2驾照能开什么车| 烘培是什么意思| 顶天立地是什么意思| 维生素b2有什么作用和功效| 蝙蝠属于什么动物| 呼吸短促是什么原因| 夜未央什么意思| 蒙蔽是什么意思| 郫县豆瓣酱能做什么菜| 妨父母痣是什么意思| 什么是顺时针| 早起嘴苦是什么原因| 孕妇口腔溃疡能用什么药| 猪肝补什么功效与作用| 什么人容易得血栓| 小孩黄疸高有什么危害| 梦见青蛙是什么意思| 刚怀孕吃什么水果对胎儿好| 结石是什么原因引起的| 腿困是什么原因引起的| 农历六月初七是什么星座| 孕期吃什么补铁| 蜗牛是什么动物| 祖马龙香水什么档次| 孕妇耳鸣是什么原因引起的| 腹水是什么意思| 大象的耳朵像什么一样| 芭乐是什么意思| 广州有什么美食| 5月29日是什么星座| 素饺子什么馅儿的好吃| 鱼靠什么呼吸| 爸爸是什么意思| 多巴胺是什么意思| 医院院长是什么级别| 蝉吃什么食物| 一什么手表| 红丹是什么| 2013属什么生肖| 脚趾甲发白是什么原因| 阴茎越来越小是什么原因| 十字架代表什么| 肩周炎吃什么药效果最好| 驻京办是干什么的| 2.4号是什么星座| 什么水果利尿| 脾疼是什么原因| 朝霞什么晚霞什么| 窦性早搏是什么意思| 梦见自己牙齿掉光了是什么征兆| lcp是什么意思| 冬至广东吃什么| 翻来覆去是什么意思| 小暑吃黄鳝有什么好处| simon是什么意思| 什么是大专| 爬坡是什么意思| 阴部痒痒的是什么原因| 浮躁的意思是什么| soie是什么面料| 鸟飞到头上什么预兆| 海鸥手表是什么档次| 丝光棉是什么材质| 眼睛飞蚊症用什么药能治好| 屠苏酒是什么酒| 萩是什么意思| 什么是精神分裂症| 换身份证需要带什么| 右乳导管扩张什么意思| 低热是什么症状| 鱼水之欢是什么意思| 肠子长息肉有什么症状| 老鼠和什么属相最配对| 大忌什么意思| 14年是什么年| 柔式按摩是什么| pku什么意思| 寄生虫长什么样| 什么叫脑白质病| 吃什么蔬菜对眼睛好| 甘油三酯低是什么原因| 三个十念什么| 胃下垂是什么症状| 红细胞分布宽度偏高是什么意思| 脸上长肉疙瘩是什么原因| 阴唇肿是什么原因| 凌空什么什么| 肌无力吃什么药| 明媚是什么意思| 什么是阿尔茨海默症| 什么鱼清蒸最好吃| 罗红霉素胶囊治什么病| 骨性关节炎吃什么药| 发泥和发蜡有什么区别| 着凉肚子疼吃什么药| 结晶高是什么原因| 白内障的症状是什么| 什么叫做t| 为什么六月腊月不搬家| 颈动脉彩超能查出什么| 四肢麻木是什么病| b型血的人是什么性格| 眼镜蛇为什么叫眼镜蛇| 申时属什么| 嘛哩嘛哩哄是什么意思| 扁桃体发炎吃什么食物| 尿酸偏高有什么危害| 舌头有点麻是什么病的前兆| 小孩荨麻疹吃什么药| 1946年属什么生肖| 生理期可以吃什么水果| 项羽为什么叫西楚霸王| 黑蚂蚁泡酒有什么功效| 为什么明星都不戴黄金| 大张伟原名叫什么| co2cp在医学上是什么| 美国为什么那么强大| 候场是什么意思| 扎西德勒是什么意思| 宝宝喜欢趴着睡觉是什么原因| 囊是什么意思| 金贵肾气丸治什么病| 肉苁蓉与什么搭配好| 元首是什么意思| 拍黄瓜是什么意思| 芋头是什么季节的| 看不上是什么意思| 苦瓜泡水喝有什么功效和作用| 生男生女取决于什么| 孕妇流鼻血是什么原因| 认贼作父是什么意思| 移居改姓始为良是什么意思| FAN英语什么意思| cl是什么牌子| 维生素k2是什么| 裤子前浪后浪是什么| 梦见游泳是什么预兆| 64岁属什么| 高血糖能吃什么| 马瘦毛长是什么意思| 学生吃什么补脑子增强记忆力最快| 狐臭挂什么科室的号| 乳头为什么是黑的| 长沙有什么区| 为什么生气会胃疼| 中央政法委书记什么级别| 鸡精吃多了有什么危害| 一个月一个元念什么| 宝付支付是什么| 肠胃不好吃什么水果好| 什么是av| 7月14日什么节日| 千秋无绝色悦目是佳人什么意思| 脸肿眼睛肿是什么原因引起的| 9.6什么星座| 副局级是什么级别| 柠檬酸是什么| 炸酥肉用什么肉最好吃| 鸽子补什么| 花卉是什么| 小猫踩奶是什么意思| 为什么会得带状疱疹| 接盘是什么意思| 中午吃什么不会胖| ny什么牌子| 孕妇吃什么是补铁的| 真棒是什么意思| 肺炎支原体抗体阴性是什么意思| 鸡蛋和什么食物相克| dha是什么意思| 黄痰吃什么药| hpv59高危阳性是什么意思| 肌酐什么意思| 糖类抗原CA125高是什么意思| 塑化剂是什么| 庆生是什么意思| 什么护肤品最好用| 红色的海鱼是什么鱼| 乌龟为什么喜欢叠罗汉| cbd是什么| 121什么意思| 玉米须能治什么病| 复古红是什么颜色| 姓名字号是什么意思| 比基尼是什么| 高寿是什么意思| 忠心不二是什么生肖| 赶的偏旁是什么| 牙结石用什么牙膏最好| 计算机二级什么时候考| 三叉神经痛吃什么药效果好| 绝育手术对女性有什么危害| 肾上腺结节挂什么科| 今天是什么节气24节气| 老年人适合吃什么| 宣肺是什么意思| 外阴皮肤痒是什么原因| 长期腹泻是什么病| 经常打呼噜是什么原因| 笃什么意思| 做梦梦见被蛇咬是什么意思| 人见人爱是什么生肖| 血液透析是什么意思| 风热感冒吃什么消炎药| 经期吃什么| oba是什么意思| 脚上长疣是什么原因| 农历七月初七俗称什么| 男生被口什么感觉| 养殖业什么最赚钱农村| 指甲发黑是什么原因| 脑鸣去医院挂什么科| 红色药片一般是什么药| 凝滞是什么意思| 羊水穿刺检查什么| 化学性肝损伤是指什么| 前列腺钙化灶是什么病| 这是什么病| 喝什么降火| 心率过低吃什么药| 吃什么改善睡眠| 绀是什么意思| 法令纹用什么填充效果最好| 给产妇送什么礼物好| 手和脚脱皮是什么原因| 小便带血是什么原因| 蚂蚁吃什么| 虾子不能和什么一起吃| 事宜愿为是什么意思| 良代表什么生肖| 上元节是什么节日| 肩周炎贴什么膏药效果最好| 口腔溃疡是缺少什么维生素| 为什么梦不到死去的亲人| 什么姿势舒服| 银子有什么功效与作用| 四个月念什么字| 1998年的虎是什么命| 飞蚊症是什么原因引起的| 自我价值是什么意思| 属兔与什么属相相克| 烂尾楼是什么意思| 纯钛是什么材质| 观音成道日是什么意思| 孕吐是什么时候开始| 静脉炎吃什么药| 什么是u| ipo过会是什么意思| 天外有天人外有人是什么意思| 同居是什么意思| k字开头是什么车| 泡脚去湿气用什么泡最好| 箜篌是什么乐器| 尿频挂什么科| 浪子回头是什么意思| 蒲公英能治什么病| 什么肥什么壮| preparing是什么意思| 鹅蛋有什么营养| 维生素c主治什么| 狐臭看什么科| 胪是什么意思| 红煞是什么意思| 百度Jump to content

江西遂川打造全国首条“金丝楠木”生态旅游线路

From Wikipedia, the free encyclopedia
Unsolved problem in computer science
Can integer factorization be solved in polynomial time on a classical computer?
百度 正是这个判罚引来了北京队主教练和球员的不满,在回放慢镜头的时候,解说员也在强调这是一个违例,但是裁判并没有吹罚,打据最新消息,CBA裁判办公室认定这是一次严重漏判,哈德森有着明显的二次运球的动作,辽宁队获利得到三分。

In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3?·?5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3?·?20 = 3?·?(5?·?4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.

To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers 2, 3, 5, and so on, up to the square root of n. For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient. A prime factorization algorithm typically involves testing whether each factor is prime each time a factor is found.

When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA public-key encryption and the RSA digital signature.[1] Many areas of mathematics and computer science have been brought to bear on this problem, including elliptic curves, algebraic number theory, and quantum computing.

Not all numbers of a given length are equally hard to factor. The hardest instances of these problems (for currently known techniques) are semiprimes, the product of two prime numbers. When they are both large, for instance more than two thousand bits long, randomly chosen, and about the same size (but not too close, for example, to avoid efficient factorization by Fermat's factorization method), even the fastest prime factorization algorithms on the fastest classical computers can take enough time to make the search impractical; that is, as the number of digits of the integer being factored increases, the number of operations required to perform the factorization on any classical computer increases drastically.

Many cryptographic protocols are based on the presumed difficulty of factoring large composite integers or a related problem –for example, the RSA problem. An algorithm that efficiently factors an arbitrary integer would render RSA-based public-key cryptography insecure.

Prime decomposition

[edit]
Prime decomposition of n = 864 as 25 × 33

By the fundamental theorem of arithmetic, every positive integer has a unique prime factorization. (By convention, 1 is the empty product.) Testing whether the integer is prime can be done in polynomial time, for example, by the AKS primality test. If composite, however, the polynomial time tests give no insight into how to obtain the factors.

Given a general algorithm for integer factorization, any integer can be factored into its constituent prime factors by repeated application of this algorithm. The situation is more complicated with special-purpose factorization algorithms, whose benefits may not be realized as well or even at all with the factors produced during decomposition. For example, if n = 171 × p × q where p < q are very large primes, trial division will quickly produce the factors 3 and 19 but will take p divisions to find the next factor. As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will begin with ?n? = 18848997159 which immediately yields b = a2 ? n = 4 = 2 and hence the factors a ? b = 18848997157 and a + b = 18848997161. While these are easily recognized as composite and prime respectively, Fermat's method will take much longer to factor the composite number because the starting value of ?18848997157? = 137292 for a is a factor of 10 from 1372933.

Current state of the art

[edit]

Among the b-bit numbers, the most difficult to factor in practice using existing algorithms are those semiprimes whose factors are of similar size. For this reason, these are the integers used in cryptographic applications.

In 2019, a 240-digit (795-bit) number (RSA-240) was factored by a team of researchers including Paul Zimmermann, utilizing approximately 900 core-years of computing power.[2] These researchers estimated that a 1024-bit RSA modulus would take about 500 times as long.[3]

The largest such semiprime yet factored was RSA-250, an 829-bit number with 250 decimal digits, in February 2020. The total computation time was roughly 2700 core-years of computing using Intel Xeon Gold 6130 at 2.1 GHz. Like all recent factorization records, this factorization was completed with a highly optimized implementation of the general number field sieve run on hundreds of machines.

Time complexity

[edit]

No algorithm has been published that can factor all integers in polynomial time, that is, that can factor a b-bit number n in time O(bk) for some constant k. Neither the existence nor non-existence of such algorithms has been proved, but it is generally suspected that they do not exist.[4][5]

There are published algorithms that are faster than O((1 + ε)b) for all positive ε, that is, sub-exponential. As of 2022, the algorithm with best theoretical asymptotic running time is the general number field sieve (GNFS), first published in 1993,[6] running on a b-bit number n in time:

For current computers, GNFS is the best published algorithm for large n (more than about 400 bits). For a quantum computer, however, Peter Shor discovered an algorithm in 1994 that solves it in polynomial time. Shor's algorithm takes only O(b3) time and O(b) space on b-bit number inputs. In 2001, Shor's algorithm was implemented for the first time, by using NMR techniques on molecules that provide seven qubits.[7]

In order to talk about complexity classes such as P, NP, and co-NP, the problem has to be stated as a decision problem.

Decision problem (Integer factorization)For every natural numbers and , does n have a factor smaller than k besides 1?

It is known to be in both NP and co-NP, meaning that both "yes" and "no" answers can be verified in polynomial time. An answer of "yes" can be certified by exhibiting a factorization n = d(?n/d?) with dk. An answer of "no" can be certified by exhibiting the factorization of n into distinct primes, all larger than k; one can verify their primality using the AKS primality test, and then multiply them to obtain n. The fundamental theorem of arithmetic guarantees that there is only one possible string of increasing primes that will be accepted, which shows that the problem is in both UP and co-UP.[8] It is known to be in BQP because of Shor's algorithm.

The problem is suspected to be outside all three of the complexity classes P, NP-complete,[9] and co-NP-complete. It is therefore a candidate for the NP-intermediate complexity class.

In contrast, the decision problem "Is n a composite number?" (or equivalently: "Is n a prime number?") appears to be much easier than the problem of specifying factors of n. The composite/prime problem can be solved in polynomial time (in the number b of digits of n) with the AKS primality test. In addition, there are several probabilistic algorithms that can test primality very quickly in practice if one is willing to accept a vanishingly small possibility of error. The ease of primality testing is a crucial part of the RSA algorithm, as it is necessary to find large prime numbers to start with.

Factoring algorithms

[edit]

Special-purpose

[edit]

A special-purpose factoring algorithm's running time depends on the properties of the number to be factored or on one of its unknown factors: size, special form, etc. The parameters which determine the running time vary among algorithms.

An important subclass of special-purpose factoring algorithms is the Category 1 or First Category algorithms, whose running time depends on the size of smallest prime factor. Given an integer of unknown form, these methods are usually applied before general-purpose methods to remove small factors.[10] For example, naive trial division is a Category 1 algorithm.

General-purpose

[edit]

A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm,[10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.

Other notable algorithms

[edit]

Heuristic running time

[edit]

In number theory, there are many integer factoring algorithms that heuristically have expected running time

in little-o and L-notation. Some examples of those algorithms are the elliptic curve method and the quadratic sieve. Another such algorithm is the class group relations method proposed by Schnorr,[11] Seysen,[12] and Lenstra,[13] which they proved only assuming the unproved generalized Riemann hypothesis.

Rigorous running time

[edit]

The Schnorr–Seysen–Lenstra probabilistic algorithm has been rigorously proven by Lenstra and Pomerance[14] to have expected running time Ln[?1/2?, 1+o(1)] by replacing the GRH assumption with the use of multipliers. The algorithm uses the class group of positive binary quadratic forms of discriminant Δ denoted by GΔ. GΔ is the set of triples of integers (a, b, c) in which those integers are relative prime.

Schnorr–Seysen–Lenstra algorithm

[edit]

Given an integer n that will be factored, where n is an odd positive integer greater than a certain constant. In this factoring algorithm the discriminant Δ is chosen as a multiple of n, Δ = ?dn, where d is some positive multiplier. The algorithm expects that for one d there exist enough smooth forms in GΔ. Lenstra and Pomerance show that the choice of d can be restricted to a small set to guarantee the smoothness result.

Denote by PΔ the set of all primes q with Kronecker symbol (?Δ/q?) = 1. By constructing a set of generators of GΔ and prime forms fq of GΔ with q in PΔ a sequence of relations between the set of generators and fq are produced. The size of q can be bounded by c0(log|Δ|)2 for some constant c0.

The relation that will be used is a relation between the product of powers that is equal to the neutral element of GΔ. These relations will be used to construct a so-called ambiguous form of GΔ, which is an element of GΔ of order dividing 2. By calculating the corresponding factorization of Δ and by taking a gcd, this ambiguous form provides the complete prime factorization of n. This algorithm has these main steps:

Let n be the number to be factored.

  1. Let Δ be a negative integer with Δ = ?dn, where d is a multiplier and Δ is the negative discriminant of some quadratic form.
  2. Take the t first primes p1 = 2, p2 = 3, p3 = 5, ..., pt, for some tN.
  3. Let fq be a random prime form of GΔ with (?Δ/q?) = 1.
  4. Find a generating set X of GΔ.
  5. Collect a sequence of relations between set X and {fq : qPΔ} satisfying:
  6. Construct an ambiguous form (a, b, c) that is an element fGΔ of order dividing 2 to obtain a coprime factorization of the largest odd divisor of Δ in which Δ = ?4ac or Δ = a(a ? 4c) or Δ = (b ? 2a)(b + 2a).
  7. If the ambiguous form provides a factorization of n then stop, otherwise find another ambiguous form until the factorization of n is found. In order to prevent useless ambiguous forms from generating, build up the 2-Sylow group Sll2(Δ) of G(Δ).

To obtain an algorithm for factoring any positive integer, it is necessary to add a few steps to this algorithm such as trial division, and the Jacobi sum test.

Expected running time

[edit]

The algorithm as stated is a probabilistic algorithm as it makes random choices. Its expected running time is at most Ln[?1/2?, 1+o(1)].[14]

See also

[edit]

Notes

[edit]
  1. ^ Lenstra, Arjen K. (2011), "Integer Factoring", in van Tilborg, Henk C. A.; Jajodia, Sushil (eds.), Encyclopedia of Cryptography and Security, Boston: Springer, pp. 611–618, doi:10.1007/978-1-4419-5906-5_455, ISBN 978-1-4419-5905-8
  2. ^ "[Cado-nfs-discuss] 795-bit factoring and discrete logarithms". Archived from the original on 2025-08-06.
  3. ^ Kleinjung, Thorsten; Aoki, Kazumaro; Franke, Jens; Lenstra, Arjen K.; Thomé, Emmanuel; Bos, Joppe W.; Gaudry, Pierrick; Kruppa, Alexander; Montgomery, Peter L.; Osvik, Dag Arne; te Riele, Herman J. J.; Timofeev, Andrey; Zimmermann, Paul (2010). "Factorization of a 768-Bit RSA Modulus" (PDF). In Rabin, Tal (ed.). Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings. Lecture Notes in Computer Science. Vol. 6223. Springer. pp. 333–350. doi:10.1007/978-3-642-14623-7_18. ISBN 978-3-642-14622-0.
  4. ^ Krantz, Steven G. (2011), The Proof is in the Pudding: The Changing Nature of Mathematical Proof, New York: Springer, p. 203, doi:10.1007/978-0-387-48744-1, ISBN 978-0-387-48908-7, MR 2789493
  5. ^ Arora, Sanjeev; Barak, Boaz (2009), Computational complexity, Cambridge: Cambridge University Press, p. 230, doi:10.1017/CBO9780511804090, ISBN 978-0-521-42426-4, MR 2500087, S2CID 215746906
  6. ^ Buhler, J. P.; Lenstra, H. W. Jr.; Pomerance, Carl (1993). "Factoring integers with the number field sieve". The development of the number field sieve. Lecture Notes in Mathematics. Vol. 1554. Springer. pp. 50–94. doi:10.1007/BFb0091539. hdl:1887/2149. ISBN 978-3-540-57013-4. Retrieved 12 March 2021.
  7. ^ Vandersypen, Lieven M. K.; et al. (2001). "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance". Nature. 414 (6866): 883–887. arXiv:quant-ph/0112176. Bibcode:2001Natur.414..883V. doi:10.1038/414883a. PMID 11780055. S2CID 4400832.
  8. ^ Lance Fortnow (2025-08-06). "Computational Complexity Blog: Complexity Class of the Week: Factoring".
  9. ^ Goldreich, Oded; Wigderson, Avi (2008), "IV.20 Computational Complexity", in Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.), The Princeton Companion to Mathematics, Princeton, New Jersey: Princeton University Press, pp. 575–604, ISBN 978-0-691-11880-2, MR 2467561. See in particular p. 583.
  10. ^ a b David Bressoud and Stan Wagon (2000). A Course in Computational Number Theory. Key College Publishing/Springer. pp. 168–69. ISBN 978-1-930190-10-8.
  11. ^ Schnorr, Claus P. (1982). "Refined analysis and improvements on some factoring algorithms". Journal of Algorithms. 3 (2): 101–127. doi:10.1016/0196-6774(82)90012-8. MR 0657269. Archived from the original on September 24, 2017.
  12. ^ Seysen, Martin (1987). "A probabilistic factorization algorithm with quadratic forms of negative discriminant". Mathematics of Computation. 48 (178): 757–780. doi:10.1090/S0025-5718-1987-0878705-X. MR 0878705.
  13. ^ Lenstra, Arjen K (1988). "Fast and rigorous factorization under the generalized Riemann hypothesis" (PDF). Indagationes Mathematicae. 50 (4): 443–454. doi:10.1016/S1385-7258(88)80022-2.
  14. ^ a b Lenstra, H. W.; Pomerance, Carl (July 1992). "A Rigorous Time Bound for Factoring Integers" (PDF). Journal of the American Mathematical Society. 5 (3): 483–516. doi:10.1090/S0894-0347-1992-1137100-0. MR 1137100.

References

[edit]
[edit]
双子座女和什么星座最配 爱马仕为什么要配货 世界上最毒的蜘蛛叫什么 调教什么意思 什么书没有字
41是什么意思 456是什么意思 桉字五行属什么 定坤丹什么时候吃最好 小苏打有什么作用
总胆红素偏高说明什么 黄芪长什么样子的图片 红楼梦大结局是什么 天高地厚是什么生肖 吃太烫的东西有什么坏处
鼻衄是什么意思 不敢造次是什么意思 蚩尤姓什么 身家是什么意思 rip是什么意思
眼底充血用什么眼药水hcv8jop8ns5r.cn 面皮是什么做的hcv9jop7ns1r.cn 急性胆囊炎吃什么药inbungee.com 淋巴系统由什么组成hcv8jop0ns8r.cn 什么动物吃蛇hcv9jop3ns6r.cn
什么叫六亲hcv9jop0ns9r.cn 翡翠跟玉有什么区别hcv9jop0ns7r.cn navy是什么意思hcv9jop3ns2r.cn 正佳广场有什么好玩的hcv8jop5ns4r.cn 绿是什么hcv9jop1ns4r.cn
九月三号是什么星座wmyky.com 黄连治什么病最好hcv9jop6ns0r.cn 月经一个月来两次是什么原因hcv9jop4ns9r.cn 什么荔枝最贵hcv7jop6ns3r.cn 医保乙类是什么意思hcv7jop6ns6r.cn
人吃什么才能长胖hkuteam.com mackage是什么牌子hanqikai.com 六月十六是什么日子hcv9jop6ns3r.cn 平反是什么意思hcv8jop6ns0r.cn 脾切除后有什么影响hanqikai.com
百度