梦到别人怀孕了是什么意思| 八股文是什么| 群聊名字什么最好听| 白色蛇是什么蛇| 怀孕了吃什么药能流掉| 血脂高不能吃什么食物| ca医学代表什么意思| 肝内小囊肿是什么意思| 小白兔是什么意思| 偈语是什么意思| 肝功能四项检查什么| 脸上容易出油是什么原因| 小名是什么意思| 阴道出血是什么原因| 原教旨主义是什么意思| 切洋葱为什么会流泪| 每年什么时候最热| 喝酒上脸是什么原因| 来例假可以吃什么水果| 定妆用什么好| 双子女和什么座最配对| 大姨妈一个月来两次是什么原因| 一什么乌云| 窦性心律不齐有什么危害| 白炽灯属于什么光源| 闲云野鹤是什么意思| 手指甲上有竖纹是什么原因| 嘴苦是什么病的征兆| 99年的兔是什么命| 吃什么紧致皮肤抗衰老| 荣辱与共是什么意思| 白糖和冰糖有什么区别| 上单是什么意思| who是什么意思| 一喝牛奶就拉肚子是什么原因| 黄精有什么功效和作用| 孩子记忆力差吃什么好| 吃避孕药为什么要吃维生素c| 918是什么星座| 乳腺彩超挂什么科| 孕早期有什么症状| 知我者非你也什么意思| 工作性质是什么| 甲功三项能查出什么病| 脊椎炎有什么症状| 手部湿疹用什么药膏| 腊八节吃什么| europe是什么意思| 九五年属什么| 麾下什么意思| 位移是什么| 孩子睡觉磨牙是什么原因| 缺钾吃什么水果| 为什么日语怎么说| 间接胆红素高说明什么| 腮腺炎挂什么科| 1976年五行属什么| 大便臭是什么原因| 宠物蛇吃什么食物| 郁郁寡欢是什么意思| 受用是什么意思| 摇摇欲坠是什么意思| 坐骨神经痛吃什么药好| 查验是什么意思| 7月10号是什么星座| 霜花店讲了什么故事| 做梦梦到猪是什么意思| 准确值是什么意思| 颈部淋巴结肿大挂什么科| 高血压属于什么科| 孕妇喝什么水好| 孕前检查什么时候去最合适| 血糖为什么会高| 黍米是什么米| 随喜功德是什么意思| 吃榴莲对妇科病有什么好处| 奇行种什么意思| 夜盲症是什么| 高压偏低是什么原因造成的| 打hcg针有什么作用| 清晨醒来口苦是什么原因| 摩羯是什么星座| 清华大学校长什么级别| aojo眼镜什么档次| 神经元特异性烯醇化酶是什么意思| 胆红素偏高挂什么科| pcr检测是什么| 就绪是什么意思| 什么是硬水| 凝血五项是检查什么的| 什么能力| 过敏挂什么科| 一日三餐是什么生肖| 三毛为什么自杀| 为什么做b超要憋尿| kg是什么意思| 三剑客是什么意思| 小孩晚上睡觉磨牙是什么原因| 拉肚子应该吃什么药| 胎盘低置需要注意什么| 婴儿拉肚子吃什么药| 成人改名字需要什么手续| 吃什么有助于伤口愈合| 左心室强光点是什么意思| 什么动物最厉害| 十月是什么星座| 早晨嘴苦是什么原因引起的| 右加一笔是什么字| 吊儿郎当什么意思| 寻麻疹吃什么药| 牛肉发绿色是什么原因| ear什么意思| 眼睛浮肿是什么原因| 单发房早是什么意思| 什么都有| 番是什么意思| 感冒了挂什么科| 斗破苍穹什么时候出的| 苹果和生姜煮水喝有什么功效| 肠化生是什么意思| 一千年前是什么朝代| 小孩晚上不睡觉是什么原因| 高傲什么意思| 黄牛什么意思| 四月是什么星座| 总胆固醇高有什么危害| phc是什么意思| 补充微量元素吃什么| 左眼皮一直跳什么预兆| 绝经后子宫内膜增厚是什么原因| 九月三号是什么星座| 沁什么意思| 煞科什么意思| 关灯吃面什么意思| 7月22号是什么日子| 大佐是什么军衔| 香干炒什么菜好吃| 吃什么可以拉肚子通便| 童养媳是什么意思| 8.11是什么星座| 右侧肋骨下方是什么器官| 儿童腮腺炎挂什么科| 钱癣用什么药膏最好| 奴役是什么意思| 做梦梦到地震预示着什么| 啾是什么意思| 岗位性质指的是什么| 一个人在家无聊可以做什么| 血红蛋白浓度偏高是什么意思| 盐袋子热敷有什么好处| 每天吃洋葱有什么好处| 白色舌苔厚是什么原因| 甘露醇是治什么的| 芒硝是什么东西| 来姨妈不能吃什么水果| 阴茎皮开裂是什么原因| 气虚吃什么中药| 吃什么上火| l do是什么意思| 牙龈红肿吃什么药| 鹭鸶是什么动物| 输血前八项指什么| 孕期感冒可以吃什么药| 志字五行属什么| 十月十六号是什么星座| 珑字五行属什么| 膝盖小腿酸软无力是什么原因| 转网是什么意思| 什么将什么相| 尿路感染是什么原因引起的| 卡鱼刺挂什么科| 引火下行是什么意思| 海绵体充血不足吃什么药| 酸菜鱼是什么地方的菜| 肛门胀痛什么原因| 盐吃多了有什么危害| 去年的树告诉我们什么| 吃什么能提神不打瞌睡| 法学是干什么的| 眼睛有黑影是什么原因| 社区建档需要什么资料| iruri 什么意思| 台湾有什么特产最有名| les什么意思| 优生十项是检查什么| 营养性贫血是什么意思| 肠功能紊乱吃什么药| 印度什么时候独立的| dcc是什么意思| 层次是什么意思| 药敏试验是什么意思| 中国海警是什么编制| 送同学什么生日礼物好| 1974年属什么生肖| 眼睑肿是什么原因| 肝病初期有什么症状| 一什么红枣| 不想吃油腻的东西是什么原因| 化疗和靶向有什么区别| 肿瘤最怕什么| 吃什么提高代谢| 麻是什么植物| 什么原因导致荨麻疹| 一个木一个寿念什么| 什么是孤独症| 上梁不正下梁歪是什么意思| 报价是什么意思| 拔罐红色是什么原因| 道地是什么意思| 现在什么年| 为什么胸闷一吃丹参滴丸就好| 福泽深厚什么意思| 世事无常什么意思| 为什么会得近视眼| 歇夏是什么意思| reading是什么意思| 外阴白斑是什么样子| 女生不来大姨妈是什么原因| 牙周炎用什么药最好| ect是什么检查| 什么炖排骨好吃| ada医学上是什么意思| 心梗挂什么科| 友友是什么意思| 川崎病是什么症状| 情趣内衣是什么意思| 什么的朝霞| 禅修是什么意思| 什么叫痛风| 王京读什么| 吹风样杂音见于什么病| 瑞士移民需要什么条件| dq是什么| 淡奶油是什么| 虚火是什么意思| a型rh阳性是什么意思| 盐茶是什么茶| 孩子病毒感染吃什么药| 青蒜是什么| 检查乙肝挂什么科| 激素六项挂什么科| 入伏吃羊肉有什么好处| 王安石号什么| 编程是什么专业| 无极调光是什么意思| 10.16是什么星座| 南方是什么生肖| 月青念什么| 女性下面长什么样| 鸡毛菜是什么菜| 朝秦暮楚是什么意思| 什么把什么造句子| 夏天脚出汗是什么原因| 革兰氏阳性菌是什么病| 桂圆跟龙眼有什么区别| 纺织娘是什么| 养肝护肝吃什么食物| 什么东西能美白| 盐酸舍曲林片治疗什么程度的抑郁| 10月1什么星座| 小腿灼热感是什么原因| 嘴唇起泡是什么原因| 肠胃功能紊乱什么症状| 硫黄和硫磺有什么区别| 百度Jump to content

航母杀手!俄“锆石”导弹测试:达到8倍音速

From Wikipedia, the free encyclopedia
In Disquisitiones Arithmeticae (1801) Gauss proved the unique factorization theorem[1] and used it to prove the law of quadratic reciprocity.[2]
百度 在坤音娱乐创始人秦周懿看来,这背后暴露了中国娱乐公司存在的诸多问题许多偶像定位不清晰,公司无标准化艺人产品、没有品牌化思路,营销方式和营销平台分散,粉丝运营相对自发等。

In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 is prime or can be represented uniquely as a product of prime numbers, up to the order of the factors.[a][3][4][5] For example,

The theorem says two things about this example: first, that 1200 can be represented as a product of primes, and second, that no matter how this is done, there will always be exactly four 2s, one 3, two 5s, and no other primes in the product.

The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (for example, ).

This theorem is one of the main reasons why 1 is not considered a prime number: if 1 were prime, then factorization into primes would not be unique; for example,

The theorem generalizes to other algebraic structures that are called unique factorization domains and include principal ideal domains, Euclidean domains, and polynomial rings over a field. However, the theorem does not hold for algebraic integers.[b] This failure of unique factorization is one of the reasons for the difficulty of the proof of Fermat's Last Theorem. The implicit use of unique factorization in rings of algebraic integers is behind the error of many of the numerous false proofs that have been written during the 358 years between Fermat's statement and Wiles's proof.

History

[edit]

The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid's Elements.

If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers.

—?Euclid, Elements Book VII, Proposition 30

(In modern terminology: if a prime p divides the product ab, then p divides either a or b or both.) Proposition 30 is referred to as Euclid's lemma, and it is the key in the proof of the fundamental theorem of arithmetic.

Any composite number is measured by some prime number.

—?Euclid, Elements Book VII, Proposition 31

(In modern terminology: every integer greater than one is divided evenly by some prime number.) Proposition 31 is proved directly by infinite descent.

Any number either is prime or is measured by some prime number.

—?Euclid, Elements Book VII, Proposition 32

Proposition 32 is derived from proposition 31, and proves that the decomposition is possible.

If a number be the least that is measured by prime numbers, it will not be measured by any other prime number except those originally measuring it.

—?Euclid, Elements Book IX, Proposition 14

(In modern terminology: a least common multiple of several prime numbers is not a multiple of any other prime number.) Book IX, proposition 14 is derived from Book VII, proposition 30, and proves partially that the decomposition is unique – a point critically noted by André Weil.[c] Indeed, in this proposition the exponents are all equal to one, so nothing is said for the general case.

While Euclid took the first step on the way to the existence of prime factorization, Kamāl al-Dīn al-Fārisī took the final step[d] and stated for the first time the fundamental theorem of arithmetic.[e]

Article 16 of Gauss's Disquisitiones Arithmeticae seems to be the first proof of the uniqueness part of the theorem.[1]

Applications

[edit]

Canonical representation of a positive integer

[edit]

Every positive integer n > 1 can be represented in exactly one way as a product of prime powers

where p1 < p2 < ... < pk are primes and the ni are positive integers. This representation is commonly extended to all positive integers, including 1, by the convention that the empty product is equal to 1 (the empty product corresponds to k = 0).

This representation is called the canonical representation[6] of n, or the standard form[7][8] of n. For example,

999 = 33×37,
1000 = 23×53,
1001 = 7×11×13.

Factors p0 = 1 may be inserted without changing the value of n (for example, 1000 = 23×30×53). In fact, any positive integer can be uniquely represented as an infinite product taken over all the positive prime numbers, as

where a finite number of the ni are positive integers, and the others are zero.

Allowing negative exponents provides a canonical form for positive rational numbers.

Arithmetic operations

[edit]

The canonical representations of the product, greatest common divisor (GCD), and least common multiple (LCM) of two numbers a and b can be expressed simply in terms of the canonical representations of a and b themselves:

However, integer factorization, especially of large numbers, is much more difficult than computing products, GCDs, or LCMs, so these formulas have limited use in practice.

Arithmetic functions

[edit]

Many arithmetic functions are defined using the canonical representation. In particular, the values of additive and multiplicative functions are determined by their values on the powers of prime numbers.

Proof

[edit]

The proof uses Euclid's lemma (Elements VII, 30): If a prime divides the product of two integers, then it must divide at least one of these integers.

Existence

[edit]

It must be shown that every integer greater than 1 is either prime or a product of primes. First, 2 is prime, and this is true for ??. Then, for ??, assume by strong induction, that this is true for all numbers greater than 1 and less than n. If n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = a b, and 1 < ab < n. By the induction hypothesis, a = p1 p2 ??? pj and b = q1 q2 ??? qk are products of primes. But then n = a b = p1 p2 ??? pj q1 q2 ??? qk is a product of primes.

Uniqueness

[edit]

Suppose, to the contrary, there is an integer that has two distinct prime factorizations. Let n be the least such integer and write n = p1 p2 ... pj = q1 q2 ... qk, where each pi and qi is prime. We see that p1 divides q1 q2 ... qk, so p1 divides some qi by Euclid's lemma. Without loss of generality, say p1 divides q1. Since p1 and q1 are both prime, it follows that p1 = q1. Returning to our factorizations of n, we may cancel these two factors to conclude that p2 ... pj = q2 ... qk. We now have two distinct prime factorizations of some integer strictly smaller than n, which contradicts the minimality of n.

Uniqueness without Euclid's lemma

[edit]

The fundamental theorem of arithmetic can also be proved without using Euclid's lemma.[9] The proof that follows is inspired by Euclid's original version of the Euclidean algorithm.

Assume that is the smallest positive integer which is the product of prime numbers in two different ways. Incidentally, this implies that , if it exists, must be a composite number greater than . Now, say

Every must be distinct from every Otherwise, if say then there would exist some positive integer that is smaller than s and has two distinct prime factorizations. One may also suppose that by exchanging the two factorizations, if needed.

Setting and one has Also, since one has It then follows that

As the positive integers less than s have been supposed to have a unique prime factorization, must occur in the factorization of either or Q. The latter case is impossible, as Q, being smaller than s, must have a unique prime factorization, and differs from every The former case is also impossible, as, if is a divisor of it must be also a divisor of which is impossible as and are distinct primes.

Therefore, there cannot exist a smallest integer with more than a single distinct prime factorization. Every positive integer must either be a prime number itself, which would factor uniquely, or a composite that also factors uniquely into primes, or in the case of the integer , not factor into any prime.

Generalizations

[edit]

The first generalization of the theorem is found in Gauss's second monograph (1832) on biquadratic reciprocity. This paper introduced what is now called the ring of Gaussian integers, the set of all complex numbers a + bi where a and b are integers. It is now denoted by He showed that this ring has the four units ±1 and ±i, that the non-zero, non-unit numbers fall into two classes, primes and composites, and that (except for order), the composites have unique factorization as a product of primes (up to the order and multiplication by units).[10]

Similarly, in 1844 while working on cubic reciprocity, Eisenstein introduced the ring , where   is a cube root of unity. This is the ring of Eisenstein integers, and he proved it has the six units and that it has unique factorization.

However, it was also discovered that unique factorization does not always hold. An example is given by . In this ring one has[11]

Examples like this caused the notion of "prime" to be modified. In it can be proven that if any of the factors above can be represented as a product, for example, 2 = ab, then one of a or b must be a unit. This is the traditional definition of "prime". It can also be proven that none of these factors obeys Euclid's lemma; for example, 2 divides neither (1 + ) nor (1 - ) even though it divides their product 6. In algebraic number theory 2 is called irreducible in (only divisible by itself or a unit) but not prime in (if it divides a product it must divide one of the factors). The mention of is required because 2 is prime and irreducible in Using these definitions it can be proven that in any integral domain a prime must be irreducible. Euclid's classical lemma can be rephrased as "in the ring of integers every irreducible is prime". This is also true in and but not in

The rings in which factorization into irreducibles is essentially unique are called unique factorization domains. Important examples are polynomial rings over the integers or over a field, Euclidean domains and principal ideal domains.

In 1843 Kummer introduced the concept of ideal number, which was developed further by Dedekind (1876) into the modern theory of ideals, special subsets of rings. Multiplication is defined for ideals, and the rings in which they have unique factorization are called Dedekind domains.

There is a version of unique factorization for ordinals, though it requires some additional conditions to ensure uniqueness.

Any commutative M?bius monoid satisfies a unique factorization theorem and thus possesses arithmetical properties similar to those of the multiplicative semigroup of positive integers. Fundamental Theorem of Arithmetic is, in fact, a special case of the unique factorization theorem in commutative M?bius monoids.

See also

[edit]

Notes

[edit]
  1. ^ Using the standard conventions for the product of a sequence (the value of the empty product is 1 and the product of a single factor is the factor itself), the theorem is often stated as: every positive integer can be represented uniquely as a product of prime numbers, up to the order of the factors.
  2. ^ In a ring of algebraic integers, the factorization into prime elements may be non unique, but one can recover a unique factorization if one factors into ideals.
  3. ^ Weil (2007, p. 5): "Even in Euclid, we fail to find a general statement about the uniqueness of the factorization of an integer into primes; surely he may have been aware of it, but all he has is a statement (Eucl.IX.I4) about the l.c.m. of any number of given primes."
  4. ^ A. Goksel Agargun and E. Mehmet ?zkan. "A Historical Survey of the Fundamental Theorem of Arithmetic" (PDF). Historia Mathematica: 209. One could say that Euclid takes the first step on the way to the existence of prime factorization, and al-Farisi takes the final step by actually proving the existence of a finite prime factorization in his first proposition.
  5. ^ Rashed, Roshdi (2025-08-07). Encyclopedia of the History of Arabic Science. Routledge. p. 385. ISBN 9781134977246. The famous physicist and mathematician Kamal al-Din al-Farisi compiled a paper in which he set out deliberately to prove the theorem of Ibn Qurra in an algebraic way. This forced him to an understanding of the first arithmetical functions and to a full preparation which led him to state for the first time the fundamental theorem of arithmetic.

Citations

[edit]
  1. ^ a b Gauss (1986, Art. 16)
  2. ^ Gauss (1986, Art. 131)
  3. ^ Long (1972, p. 44)
  4. ^ Pettofrezzo & Byrkit (1970, p. 53)
  5. ^ Hardy & Wright (2008, Thm 2)
  6. ^ Long (1972, p. 45)
  7. ^ Pettofrezzo & Byrkit (1970, p. 55)
  8. ^ Hardy & Wright (2008, § 1.2)
  9. ^ Dawson, John W. (2015), Why Prove it Again? Alternative Proofs in Mathematical Practice., Springer, p. 45, ISBN 9783319173689
  10. ^ Gauss, BQ, §§ 31–34
  11. ^ Hardy & Wright (2008, § 14.6)

References

[edit]

The Disquisitiones Arithmeticae has been translated from Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.

The two monographs Gauss published on biquadratic reciprocity have consecutively numbered sections: the first contains §§ 1–23 and the second §§ 24–76. Footnotes referencing these are of the form "Gauss, BQ, § n". Footnotes referencing the Disquisitiones Arithmeticae are of the form "Gauss, DA, Art. n".

  • Gauss, Carl Friedrich (1828), Theoria residuorum biquadraticorum, Commentatio prima, G?ttingen: Comment. Soc. regiae sci, G?ttingen 6
  • Gauss, Carl Friedrich (1832), Theoria residuorum biquadraticorum, Commentatio secunda, G?ttingen: Comment. Soc. regiae sci, G?ttingen 7

These are in Gauss's Werke, Vol II, pp. 65–92 and 93–148; German translations are pp. 511–533 and 534–586 of the German edition of the Disquisitiones.

[edit]
怀孕不可以吃什么东西 为什么眉毛越来越少 胃溃疡吃什么药好 胸闷气短挂什么科 bmi是什么意思啊
看书有什么好处 跳蛋是什么 九转大肠是什么菜系 门面是什么意思 外传是什么意思
慎重考虑是什么意思 地中海贫血是什么意思 孩子晚上睡觉磨牙是什么原因 苦瓜汤为什么要放黄豆 玉露茶属于什么茶
悬饮是什么意思 景泰蓝是什么 叛逆是什么意思 吃紫菜有什么好处和坏处 吠陀是什么意思
吃阿胶对女人有什么好处imcecn.com 耐信是什么药hcv7jop5ns5r.cn 白肉是指什么肉hcv8jop3ns2r.cn 梦见女儿结婚是什么意思hcv9jop2ns6r.cn 叩齿是什么意思hcv8jop4ns7r.cn
水肿是什么症状hcv9jop2ns8r.cn 负责是什么意思hcv8jop5ns3r.cn 侧睡流口水是什么原因helloaicloud.com 美沙芬片是什么药youbangsi.com lookbook是什么意思hcv8jop3ns7r.cn
防蓝光是什么意思fenrenren.com 什么是前列腺增生hcv9jop1ns9r.cn 什么是假性近视眼hcv8jop9ns3r.cn 猴子怕什么hcv7jop9ns7r.cn 沈阳六院主要治什么病hcv7jop6ns9r.cn
为什么耳鸣hcv9jop2ns1r.cn 维生素d什么时候吃最好hcv8jop3ns3r.cn 今天冲什么生肖hcv9jop5ns9r.cn 手机为什么会发热hcv9jop6ns6r.cn 一九四六年属什么生肖cj623037.com
百度