鹿晗什么时候回国的| 献血前吃什么东西最好| 为什么250是骂人的话| supor是什么品牌| 升阳是什么意思| 吃猪肝补什么| 腰间盘突出用什么药| 闻鸡起舞是什么意思| guava是什么水果| 纳囊是什么妇科病| 男人硬不起来该吃什么药| 属羊是什么星座| cos什么意思| 乳腺彩超挂什么科| 梦魇是什么| 白居易主张什么| 中国国花是什么| 脑动脉瘤是什么原因引起的| 什么样的智齿不需要拔| hpv是什么检查| 激酶是什么| 美味佳肴是什么意思| 10月出生的是什么星座| 摸底是什么意思| 副乳是什么原因造成的| 丑小鸭告诉我们一个什么道理| blm是什么意思| 2月出生的是什么星座| 为什么都说头胎很重要| 淡是什么意思| 日希是什么字| 什么察秋毫| 晚上睡觉阴部外面为什么会痒| 缘定三生是什么意思| 除权是什么意思| 唯女子与小人难养也什么意思| 脾虚吃什么中药| 喝酒后腰疼是什么原因| 枸杞加什么泡水喝壮阳| 男人染上霉菌什么症状| h型高血压是什么意思| 什么程度算精神出轨| 白喉是什么意思| aqi是什么意思| 家里为什么突然有床虱| 补维生素吃什么药最好| 冰淇淋是什么做的| 北京为什么叫帝都| 二甲苯是什么| 干咳无痰是什么原因| 10月份是什么星座的| 什么人适合吃西洋参| 男人血精是什么原因造成的| 伊始什么意思| 什么是基因突变| 米饭配什么菜好吃| 400能上什么大学| 什么东西| 睾丸扭转是什么导致的| 中国在什么半球| 一个月小猫吃什么| 胎盘位于前壁是什么意思| 许莫氏结节是什么意思| 盆腔炎吃什么消炎药效果好| 什么样的青蛙| 心存善念是什么意思| 耳朵旁边长痘痘是什么原因| 为什么大便不成形| 手上长小水泡是什么原因| 宝宝什么时候开始说话| 今年的属相是什么生肖| 血气方刚什么意思| 1993年属鸡是什么命| 身上长红色的痣是什么原因| 高氨血症是什么病| 游泳为什么要穿泳衣| facebook是什么意思| 小米手机最新款是什么型号| 耳朵痒用什么药| 荷叶加什么减肥最快| 鼻子干痒是什么原因| 苏联为什么解体| 朱砂是什么| 手淫多了有什么坏处| 秉着是什么意思| 腺肌症有什么症状| 膀胱癌早期是什么症状| 一什么桥| 牙龈和牙齿分离是什么原因| 蜱虫最怕什么药| 喝什么茶最养胃| 种植牙是什么意思| 高碱性食物都有什么| 无锡有什么好玩的| 阴道炎用什么药效果好| 风油精有什么功效| 什么在千里| 明天叫什么日| 粉色裤子配什么上衣好看| 尿葡萄糖是什么意思| 为什么拉不出屎| 蛋白质用什么试剂鉴定| 若干是什么意思| 大生化挂什么科| 手机服务密码是什么| 自相矛盾的道理是什么| 例假提前半个月是什么原因造成的| 过敏性鼻炎用什么药效果最好| 塞翁失马是什么生肖| 胃疼有什么办法缓解| 梦见怀孕的女人是什么意思| 乙巳年是什么命| 2月15日是什么星座| 钦此是什么意思| 有什么无什么| 小便次数多是什么原因| 腰腿疼痛吃什么药效果好| 中老年人喝什么奶粉好| 血糖高喝什么好| 一个目一个敢念什么| 射精快吃什么药| 射手座喜欢什么样的女生| 双飞什么意思| 夏天脸上皮肤痒是什么原因| 才华横溢是什么生肖| 芋头是什么| 甲状腺结节吃什么散结| 985大学是什么意思| 禾真念什么| 男性硬下疳是什么样子| 什么是蝴蝶宝宝| 山楂和什么相克| 小暑是什么意思| 霉菌性阴道炎是什么引起的| 鸡毛换糖是什么意思| hpv56阳性是什么意思| 其可以组什么词| 压疮是什么| 仰仗是什么意思| 左脸长痘是什么原因| 割包皮什么意思| 冬至为什么吃水饺| 月经期适合做什么运动| 口腔溃疡吃什么好| 梦见豹子是什么预兆| 你喜欢什么动物| 热得直什么| 九月初六是什么星座| 单核细胞偏高说明什么| rop胎位是什么意思| 血压低容易得什么病| 松花粉对肝有什么好处| 淋巴结肿大看什么科室最好| 女人湿气重吃什么药效果好| 什么牌子的手机好| 洗衣机不出水是什么原因| 夏天为什么容易拉肚子| 异类是什么意思| 白癜风的症状是什么| 脾虚吃什么好| 龟头炎用什么药好| 光滑念珠菌是什么意思| 李宇春父亲是干什么的| 皮肤黑的人穿什么颜色的衣服显白| 农历10月19日是什么星座| 618是什么星座| 女鼠配什么属相最好| 女人每天吃什么抗衰老| 五花肉和什么菜炒好吃| 脚丫痒是什么原因| bpd是什么| 染色体异常是什么原因导致的| 巴基斯坦是什么人种| s是什么牌子| 肠息肉是什么症状| 不能晒太阳是什么病| 手心发热是什么原因| 夫妻宫是什么意思| 草字头一个辛读什么| 空调自动关机什么原因| 为什么一热身上就痒| 肺坠积性改变什么意思| 上眼皮肿是什么原因| 荔枝和什么吃会中毒| 肺部散在小结节是什么意思| 发烧适合吃什么食物| 甲状腺什么症状| 兆以上的计数单位是什么| 618是什么星座| 白带带血丝是什么原因| 炖鱼都放什么调料| xgrq是什么烟| 什么是造影检查| 大校上面是什么军衔| 乔迁新居送什么礼物| 身体发麻是什么原因| 讲信修什么| 清关中是什么意思| 傲慢什么意思| 男生什么时候会有生理反应| 无中生有是什么生肖| 月子能吃什么水果| bu是什么颜色| 降钙素原是什么意思| 干红是什么意思| 7到9点是什么时辰| 哀莫大于心死什么意思| 豆角不能和什么一起吃| 飞是什么结构| 频发室性早搏是什么意思| 吃丹参有什么好处| 舌苔黄厚吃什么药| 11月10号是什么星座| 吃什么卵泡长得快又圆| 天丝是什么成分| 老是睡不着觉是什么原因| 吕布的武器是什么| 孕妇吃花胶对胎儿有什么好处| 大姨妈有血块是什么原因| 腰椎退行性变什么意思| 宫内孕和宫外孕有什么区别| 史记是什么体史书| 雄鹰是什么意思| 什么原因引起脑梗| 什么是癫痫| 蛇缠腰是什么病| peony是什么意思| 嘴唇上长痘是什么原因| 血府逐瘀片主治什么病| 处女座与什么星座最配| 王字旁的字与什么有关| 彩色多普勒超声常规检查是什么| 人分三六九等什么意思| 戒备心是什么意思| 老放臭屁是什么原因| 古尔邦节什么意思| 什么球不能踢| 帕金森吃什么药效果好| 大白条是什么鱼| 汗为什么是咸的| simon什么意思| 蟑螂最喜欢吃什么| 为什么不呢| 纯水是什么| 上不下要读什么| 红楼梦为什么是四大名著之首| 束脚裤配什么鞋子| 7月20是什么星座| 免是什么意思| 红艳煞是什么意思| 天长地久是什么生肖| 广州的市花是什么| 经行是什么意思| 嘌呤高会引起什么症状| 急性肠胃炎打什么点滴| 晚上吃什么好| 上钟什么意思| 腹泻能吃什么水果| 俊五行属性是什么| rm什么意思| 嘛呢是什么意思| 抽烟对女生有什么危害| 卵巢囊肿吃什么药| qc是什么| 百度Jump to content

Tea culture festival kicks off in Shanghai

From Wikipedia, the free encyclopedia
(Redirected from 3D vertex transformation)
百度 在经典的BeoplayH8基础上,BeoplayH8i采用更加流畅和时尚的设计,精心挑选独一无二的真实材质如阳极氧化铝、柔软的小羊皮以及真牛皮,带来舒适体验的同时也是同类产品中最为轻巧的。

In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of ,[1] such that: Note that has rows and columns, whereas the transformation is from to . There are alternative expressions of transformation matrices involving row vectors that are preferred by some authors.[2][3]

Uses

[edit]

Matrices allow arbitrary linear transformations to be displayed in a consistent format, suitable for computation.[1] This also allows transformations to be composed easily (by multiplying their matrices).

Linear transformations are not the only ones that can be represented by matrices. Some transformations that are non-linear on an n-dimensional Euclidean space Rn can be represented as linear transformations on the n+1-dimensional space Rn+1. These include both affine transformations (such as translation) and projective transformations. For this reason, 4×4 transformation matrices are widely used in 3D computer graphics, as they allow to perform translation, scaling, and rotation of objects by repeated matrix multiplication. These n+1-dimensional transformation matrices are called, depending on their application, affine transformation matrices, projective transformation matrices, or more generally non-linear transformation matrices. With respect to an n-dimensional matrix, an n+1-dimensional matrix can be described as an augmented matrix.

In the physical sciences, an active transformation is one which actually changes the physical position of a system, and makes sense even in the absence of a coordinate system whereas a passive transformation is a change in the coordinate description of the physical system (change of basis). The distinction between active and passive transformations is important. By default, by transformation, mathematicians usually mean active transformations, while physicists could mean either.

Put differently, a passive transformation refers to description of the same object as viewed from two different coordinate frames.

Finding the matrix of a transformation

[edit]

If one has a linear transformation in functional form, it is easy to determine the transformation matrix A by transforming each of the vectors of the standard basis by T, then inserting the result into the columns of a matrix. In other words,

For example, the function is a linear transformation. Applying the above process (suppose that n = 2 in this case) reveals that:

The matrix representation of vectors and operators depends on the chosen basis; a similar matrix will result from an alternate basis. Nevertheless, the method to find the components remains the same.

To elaborate, vector can be represented in basis vectors, with coordinates :

Now, express the result of the transformation matrix A upon , in the given basis:

The elements of matrix A are determined for a given basis E by applying A to every , and observing the response vector

This equation defines the wanted elements, , of j-th column of the matrix A.[4]

Eigenbasis and diagonal matrix

[edit]

Yet, there is a special basis for an operator in which the components form a diagonal matrix and, thus, multiplication complexity reduces to n. Being diagonal means that all coefficients except are zeros leaving only one term in the sum above. The surviving diagonal elements, , are known as eigenvalues and designated with in the defining equation, which reduces to . The resulting equation is known as eigenvalue equation.[5] The eigenvectors and eigenvalues are derived from it via the characteristic polynomial.

With diagonalization, it is often possible to translate to and from eigenbases.

Examples in 2 dimensions

[edit]

Most common geometric transformations that keep the origin fixed are linear, including rotation, scaling, shearing, reflection, and orthogonal projection; if an affine transformation is not a pure translation it keeps some point fixed, and that point can be chosen as origin to make the transformation linear. In two dimensions, linear transformations can be represented using a 2×2 transformation matrix.

Stretching

[edit]

A stretch in the xy-plane is a linear transformation which enlarges all distances in a particular direction by a constant factor but does not affect distances in the perpendicular direction. We only consider stretches along the x-axis and y-axis. A stretch along the x-axis has the form x' = kx; y' = y for some positive constant k. (Note that if k > 1, then this really is a "stretch"; if k < 1, it is technically a "compression", but we still call it a stretch. Also, if k = 1, then the transformation is an identity, i.e. it has no effect.)

The matrix associated with a stretch by a factor k along the x-axis is given by:

Similarly, a stretch by a factor k along the y-axis has the form x' = x; y' = ky, so the matrix associated with this transformation is

Squeezing

[edit]

If the two stretches above are combined with reciprocal values, then the transformation matrix represents a squeeze mapping: A square with sides parallel to the axes is transformed to a rectangle that has the same area as the square. The reciprocal stretch and compression leave the area invariant.

Rotation

[edit]

For rotation by an angle θ counterclockwise (positive direction) about the origin the functional form is and . Written in matrix form, this becomes:[6]

Similarly, for a rotation clockwise (negative direction) about the origin, the functional form is and the matrix form is:

These formulae assume that the x axis points right and the y axis points up.

Shearing

[edit]

For shear mapping (visually similar to slanting), there are two possibilities.

A shear parallel to the x axis has and . Written in matrix form, this becomes:

A shear parallel to the y axis has and , which has matrix form:

Reflection

[edit]

For reflection about a line that goes through the origin, let be a vector in the direction of the line. Then the transformation matrix is:

Orthogonal projection

[edit]

To project a vector orthogonally onto a line that goes through the origin, let be a vector in the direction of the line. Then the transformation matrix is:

As with reflections, the orthogonal projection onto a line that does not pass through the origin is an affine, not linear, transformation.

Parallel projections are also linear transformations and can be represented simply by a matrix. However, perspective projections are not, and to represent these with a matrix, homogeneous coordinates can be used.

Examples in 3 dimensions

[edit]

Rotation

[edit]

The matrix to rotate an angle θ about any axis defined by unit vector (x,y,z) is[7]

Reflection

[edit]

To reflect a point through a plane (which goes through the origin), one can use , where is the 3×3 identity matrix and is the three-dimensional unit vector for the vector normal of the plane. If the L2 norm of , , and is unity, the transformation matrix can be expressed as:

Note that these are particular cases of a Householder reflection in two and three dimensions. A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): where for some point on the plane, or equivalently, .

If the 4th component of the vector is 0 instead of 1, then only the vector's direction is reflected and its magnitude remains unchanged, as if it were mirrored through a parallel plane that passes through the origin. This is a useful property as it allows the transformation of both positional vectors and normal vectors with the same matrix. See homogeneous coordinates and affine transformations below for further explanation.

Composing and inverting transformations

[edit]

One of the main motivations for using matrices to represent linear transformations is that transformations can then be easily composed and inverted.

Composition is accomplished by matrix multiplication. Row and column vectors are operated upon by matrices, rows on the left and columns on the right. Since text reads from left to right, column vectors are preferred when transformation matrices are composed:

If A and B are the matrices of two linear transformations, then the effect of first applying A and then B to a column vector is given by:

In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices.

When A is an invertible matrix there is a matrix A?1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using general inversion algorithms or by performing inverse operations (that have obvious geometric interpretation, like rotating in opposite direction) and then composing them in reverse order. Reflection matrices are a special case because they are their own inverses and don't need to be separately calculated.

Other kinds of transformations

[edit]

Affine transformations

[edit]
Effect of applying various 2D affine transformation matrices on a unit square. Note that the reflection matrices are special cases of the scaling matrix.
Affine transformations on the 2D plane can be performed in three dimensions. Translation is done by shearing parallel to the xy plane, and rotation is performed around the z axis.

To represent affine transformations with matrices, we can use homogeneous coordinates. This means representing a 2-vector (x, y) as a 3-vector (x, y, 1), and similarly for higher dimensions. Using this system, translation can be expressed with matrix multiplication. The functional form becomes:

All ordinary linear transformations are included in the set of affine transformations, and can be described as a simplified form of affine transformations. Therefore, any linear transformation can also be represented by a general transformation matrix. The latter is obtained by expanding the corresponding linear transformation matrix by one row and column, filling the extra space with zeros except for the lower-right corner, which must be set to 1. For example, the counter-clockwise rotation matrix from above becomes:

Using transformation matrices containing homogeneous coordinates, translations become linear, and thus can be seamlessly intermixed with all other types of transformations. The reason is that the real plane is mapped to the w = 1 plane in real projective space, and so translation in real Euclidean space can be represented as a shear in real projective space. Although a translation is a non-linear transformation in a 2-D or 3-D Euclidean space described by Cartesian coordinates (i.e. it can't be combined with other transformations while preserving commutativity and other properties), it becomes, in a 3-D or 4-D projective space described by homogeneous coordinates, a simple linear transformation (a shear).

More affine transformations can be obtained by composition of two or more affine transformations. For example, given a translation T' with vector a rotation R by an angle θ counter-clockwise, a scaling S with factors and a translation T of vector the result M of T'RST is:[8]

When using affine transformations, the homogeneous component of a coordinate vector (normally called w) will never be altered. One can therefore safely assume that it is always 1 and ignore it. However, this is not true when using perspective projections.

Perspective projection

[edit]
Comparison of the effects of applying 2D affine and perspective transformation matrices on a unit square.

Another type of transformation, of importance in 3D computer graphics, is the perspective projection. Whereas parallel projections are used to project points onto the image plane along parallel lines, the perspective projection projects points onto the image plane along lines that emanate from a single point, called the center of projection. This means that an object has a smaller projection when it is far away from the center of projection and a larger projection when it is closer (see also reciprocal function).

The simplest perspective projection uses the origin as the center of projection, and the plane at as the image plane. The functional form of this transformation is then ; . We can express this in homogeneous coordinates as:

After carrying out the matrix multiplication, the homogeneous component will be equal to the value of and the other three will not change. Therefore, to map back into the real plane we must perform the homogeneous divide or perspective divide by dividing each component by :

More complicated perspective projections can be composed by combining this one with rotations, scales, translations, and shears to move the image plane and center of projection wherever they are desired.

See also

[edit]

References

[edit]
  1. ^ a b Gentle, James E. (2007). "Matrix Transformations and Factorizations". Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer. ISBN 9780387708737.
  2. ^ Rafael Artzy (1965) Linear Geometry
  3. ^ J. W. P. Hirschfeld (1979) Projective Geometry of Finite Fields, Clarendon Press
  4. ^ Nearing, James (2010). "Chapter 7.3 Examples of Operators" (PDF). Mathematical Tools for Physics. ISBN 978-0486482125. Retrieved January 1, 2012.
  5. ^ Nearing, James (2010). "Chapter 7.9: Eigenvalues and Eigenvectors" (PDF). Mathematical Tools for Physics. ISBN 978-0486482125. Retrieved January 1, 2012.
  6. ^ "Lecture Notes" (PDF). ocw.mit.edu. Retrieved 2025-08-06.
  7. ^ Szymanski, John E. (1989). Basic Mathematics for Electronic Engineers:Models and Applications. Taylor & Francis. p. 154. ISBN 0278000681.
  8. ^ Cédric Jules (February 25, 2015). "2D transformation matrices baking".
[edit]
斑秃用什么药 狸猫换太子是什么意思 劼字取名的寓意是什么 三克油是什么意思 大便水状是什么原因
推介会是什么意思 什么是抹茶 多动症去医院挂什么科室 白醋泡脚有什么功效 大便臭是什么原因
必要性是什么意思 一直吐是什么原因 做肠胃镜挂什么科 1993年五行属什么 吃什么能治结石
泉州有什么特产 红房子是什么 敬谢不敏是什么意思 边界尚清是什么意思 苡米和薏米有什么区别
c反应蛋白高是什么意思hcv7jop4ns5r.cn 转氨酶高是什么情况hcv7jop6ns9r.cn 月经不能吃什么东西hcv9jop1ns9r.cn 身体出汗是什么原因hcv9jop4ns6r.cn 什么是爱豆hcv8jop7ns7r.cn
男人右眉毛里有痣代表什么qingzhougame.com 中性粒细胞偏高是什么原因hcv8jop0ns2r.cn 牛仔裤配什么上衣hcv8jop3ns7r.cn 老年人打嗝不止是什么原因cl108k.com 1978年五行属什么hcv8jop0ns5r.cn
哔哩哔哩是什么网站hcv7jop4ns5r.cn 脖子后面疼是什么原因hcv9jop1ns4r.cn 排尿无力是什么原因hcv8jop4ns3r.cn 行为艺术是什么意思hcv9jop6ns3r.cn 小样什么意思ff14chat.com
尿很臭是什么原因hcv8jop9ns6r.cn 绿色蛇是什么蛇hcv8jop5ns1r.cn 惹是什么意思hcv8jop3ns2r.cn 发烧吃什么药hcv8jop5ns5r.cn 喝酒后不能吃什么药aiwuzhiyu.com
百度