沐猴而冠代表什么生肖| 基因突变发生在什么时期| 1979年属什么生肖| 7.14什么情人节| 脸发黄是什么原因| 说什么情深似海我却不敢当| 转基因是什么意思| 身份证更换需要带什么| 大便失禁吃什么药| 女朋友的弟弟叫什么| 菊花是什么意思| 37岁属什么| 大利月小利月什么意思| 祛风是什么意思| 1971年属什么| 思维敏捷是什么意思| 形态各异的异是什么意思| 豆汁是什么做的| 车厘子是什么| 青龙男是什么意思| 什么是兼职| 什么是腰肌劳损| apc是什么药| 痔疮术后吃什么恢复快| 什么叫做原发性高血压| 吕布的马叫什么| 政协是干什么的| 永垂不朽什么意思| 辅酶q10什么时候吃最好| 第一次为什么进不去| 脑梗是什么引起的| 脑梗是什么原因造成的| 荨麻疹打什么针| fci是什么意思| 骨质增生吃什么药| 蟹黄是螃蟹的什么东西| 妇科假丝酵母菌是什么病| 甜五行属什么| 1930年属什么生肖| 女猴配什么属相最好| 什么得什么造句| 高血压可以喝什么饮料| p2是什么意思| 儿童说话晚去医院挂什么科| 会厌炎吃什么药最有效| 恶心头晕是什么症状| 时间单位是什么| 发达国家的标准是什么| 胃酸是什么颜色的| 六月八日是什么星座| 什么是顶香人| 土豆什么时候收获| 北豆腐是什么| 黄瓜什么时候种植| 缺铁性贫血吃什么食物好| 礻字旁与什么有关| 诸事不宜什么意思| 胃息肉是什么原因造成的| 乳头痛是什么征兆| 尿素氮偏高是什么意思| 癫痫挂什么科| 吃什么降三高最快| 木鱼是什么意思| b2c什么意思| 肝郁气滞是什么意思| 人各有命是什么意思| 晚上总是做梦是什么原因引起的| 歇斯底里是什么意思| 97属什么生肖| 鼻炎不能吃什么食物| 女人为什么会阳虚| 腊肉炒什么| 5.23是什么星座| 什么的黄瓜| 唐氏综合症是什么意思| 香菇配什么菜炒着好吃| 牙龈发炎吃什么药| 人造珍珠是什么材质| 眼睛流泪用什么药| 什么食物可以化解结石| 椅子像什么| 痛风什么原因引起| 什么原因引起低压高| 王莲是什么植物| 什么叫割礼| 什么洗发水去屑效果好| 脾胃虚寒吃什么食物| 经常闪腰是什么原因引起的| 简单是什么意思| er是什么意思| 红皮鸡蛋和白皮鸡蛋有什么区别| 3月6号是什么星座的| 讥讽的笑是什么笑| 0是偶数吗为什么| 油粘米是什么米| 莲雾什么味道| tvt是什么意思| 狗肉不能和什么一起吃| plg是什么意思| 阴虚湿热吃什么中成药| 红艳桃花是什么意思| 舌头起泡什么原因| 黄鼠狼的天敌是什么动物| 血管狭窄吃什么药| 市盈率和市净率是什么意思| 羊得布病什么症状| 伏羲和女娲是什么关系| 什么是慢阻肺| 什么一笑| 梦见妖魔鬼怪是什么意思| 胃窦病变意味着什么| 1959属什么生肖| 被紫外线灯照到有什么后果呀| 什么生肖名扬四海| 压箱钱是什么意思| 处女座女和什么星座最配| 孱弱是什么意思| 脚烧热是什么原因| 吃什么帮助消化通便| 防血栓是什么意思| cod是什么| 寿诞是什么意思| 狐臭是什么原因| 老茧是什么意思| 伤官是什么意思| 身体出现小红点是什么原因| 为什么吃完饭就想拉屎| lh是什么意思| 日入是什么时辰| 吃什么可以回奶| 易烊千玺的爸爸是干什么的| 木槿花什么时候开花| 扩词是什么| 什么中生什么| 剖腹产后可以吃什么食物| 一个火一个丙念什么| 破处是什么感觉| 短效避孕药是什么| 四个火念什么| 不惑之年什么意思| 后中长是什么意思| 商贩是什么意思| hvb是什么意思| 为什么嘴巴老是干| 支原体肺炎用什么药| vera是什么意思| 口干口苦吃什么药好| 现字五行属什么| 南京大屠杀是什么时候| 肝掌是什么样子| 头发细软是什么原因| 表哥的女儿叫什么| 津液亏虚吃什么中成药| 乳腺炎吃什么药| 晚上睡觉手麻木是什么原因| 脘痞什么意思| 宝宝胎动频繁说明什么| 脚酸疼是什么原因引起的吗| 补脾吃什么食物最好| 焦亚硫酸钠是什么| 一个鱼一个完读什么| homme是什么意思| 麻木是什么意思| 情志病是什么意思| 为什么来姨妈会拉肚子| 一什么眉毛填量词| 攒肚是什么意思| 抗氧化是什么意思| 夏天吃什么解暑| 无济于事的济是什么意思| 什么东西好消化| 授记是什么意思| 2026属什么生肖| 手背出汗是什么原因| 勰读什么| 鹅翅膀下垂是什么原因| 卤水点豆腐的卤水是什么| 助听器什么品牌最好| 喉咙有痰是什么原因| 脯氨酸氨基肽酶阳性是什么意思| 灵芝的功效与作用是什么| 橘色五行属什么| 什么牌助听器好| 嗨体是什么| 尿酸高适合吃什么水果| 摩拳擦掌是什么意思| 左下腹疼痛挂什么科| 发票抬头是什么意思| 西洋参和花旗参有什么区别| 野字五行属什么| 蝶窦炎是什么病| 冲凉是什么意思| 天空中有什么| 血糖高适合吃什么水果| 蜂王浆是什么东西| 什么是嗳气| 河南为什么叫河南| 儿童干咳吃什么药效果好| 清真不吃什么肉| 用盐刷牙有什么好处和坏处| 颅脑平扫是检查什么| 儿童登机需要什么证件| 小儿病毒性感冒吃什么药效果好| 姜子牙姓什么| 夏天出汗多是什么原因| 鄂尔多斯为什么叫鬼城| 安全套是什么| 什么是招风耳图片| 爆菊花什么感觉| 五味子不适合什么人喝| 天是什么生肖| 眼睛怕光是什么原因| 北加田加共是什么字| cbd什么意思| 尿蛋白高是什么原因| 心绞痛是什么原因引起的| 妇科检查bv是什么意思| 霍启刚家族做什么生意| 用盐洗脸有什么好处| 孩子老是流鼻血是什么原因| 无春年是什么意思| 灵敏度是什么意思| 吃什么东西对眼睛好| 纳帕皮是什么皮| 39岁属什么| 什么叫臆想症| 天秤座女和什么星座最配| 化险为夷的夷什么意思| 女性朋友生日送什么礼物好| 汗斑是什么| 丑未戌三刑会发生什么| nokia是什么牌子的手机| 怀孕掉头发厉害是什么原因| 去极化是什么意思| 生源地是什么意思| 腐竹是什么做的| 咲是什么意思| 怀孕排卵试纸显示什么| 胎儿双顶径偏大是什么原因| 爱情公寓6什么时候上映| 小狗拉肚子吃什么药| 增殖灶是什么意思| 左手发麻是什么原因| showroom是什么意思| 一个金字旁一个本念什么| 金丝熊吃什么| 肚脐眼疼是什么原因| 血氧低会有什么危害| 脑壳疼是什么原因| 医院康复科是干什么的| 鼻子两侧毛孔粗大是什么原因造成的| 93年的鸡是什么命| 通字五行属什么| 三位一体是什么生肖| 血稠吃什么药| 一个句号是什么意思| 什么| 头晕吃什么药| 白头发吃什么可以变黑| 今天开什么码| 不安分是什么意思| 宫寒可以吃什么水果| 尿道炎吃什么药最好| 社区医院属于什么级别| 百度Jump to content

公安部:对外国人永久居留证件实施便利化改革

From Wikipedia, the free encyclopedia
Illustration of word embedding. Each word is a point in some space. The word embedding enables to perform semantic operator like obtaining the capital of a given country.
百度 对于道德补偿的解释机制,心理学家认为,不道德行为会导致个体的道德自我概念受到威胁,当事人会倾向于通过道德行为或者道德洁净行为来修复道德自我概念。

In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis. Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning.[1] Word embeddings can be obtained using language modeling and feature learning techniques, where words or phrases from the vocabulary are mapped to vectors of real numbers.

Methods to generate this mapping include neural networks,[2] dimensionality reduction on the word co-occurrence matrix,[3][4][5] probabilistic models,[6] explainable knowledge base method,[7] and explicit representation in terms of the context in which words appear.[8]

Word and phrase embeddings, when used as the underlying input representation, have been shown to boost the performance in NLP tasks such as syntactic parsing[9] and sentiment analysis.[10]

Development and history of the approach

[edit]

In distributional semantics, a quantitative methodological approach for understanding meaning in observed language, word embeddings or semantic feature space models have been used as a knowledge representation for some time.[11] Such models aim to quantify and categorize semantic similarities between linguistic items based on their distributional properties in large samples of language data. The underlying idea that "a word is characterized by the company it keeps" was proposed in a 1957 article by John Rupert Firth,[12] but also has roots in the contemporaneous work on search systems[13] and in cognitive psychology.[14]

The notion of a semantic space with lexical items (words or multi-word terms) represented as vectors or embeddings is based on the computational challenges of capturing distributional characteristics and using them for practical application to measure similarity between words, phrases, or entire documents. The first generation of semantic space models is the vector space model for information retrieval.[15][16][17] Such vector space models for words and their distributional data implemented in their simplest form results in a very sparse vector space of high dimensionality (cf. curse of dimensionality). Reducing the number of dimensions using linear algebraic methods such as singular value decomposition then led to the introduction of latent semantic analysis in the late 1980s and the random indexing approach for collecting word co-occurrence contexts.[18][19][20][21] In 2000, Bengio et al. provided in a series of papers titled "Neural probabilistic language models" to reduce the high dimensionality of word representations in contexts by "learning a distributed representation for words".[22][23][24]

A study published in NeurIPS (NIPS) 2002 introduced the use of both word and document embeddings applying the method of kernel CCA to bilingual (and multi-lingual) corpora, also providing an early example of self-supervised learning of word embeddings.[25]

Word embeddings come in two different styles, one in which words are expressed as vectors of co-occurring words, and another in which words are expressed as vectors of linguistic contexts in which the words occur; these different styles are studied in Lavelli et al., 2004.[26] Roweis and Saul published in Science how to use "locally linear embedding" (LLE) to discover representations of high dimensional data structures.[27] Most new word embedding techniques after about 2005 rely on a neural network architecture instead of more probabilistic and algebraic models, after foundational work done by Yoshua Bengio[28][circular reference] and colleagues.[29][30]

The approach has been adopted by many research groups after theoretical advances in 2010 had been made on the quality of vectors and the training speed of the model, as well as after hardware advances allowed for a broader parameter space to be explored profitably. In 2013, a team at Google led by Tomas Mikolov created word2vec, a word embedding toolkit that can train vector space models faster than previous approaches. The word2vec approach has been widely used in experimentation and was instrumental in raising interest for word embeddings as a technology, moving the research strand out of specialised research into broader experimentation and eventually paving the way for practical application.[31]

Polysemy and homonymy

[edit]

Historically, one of the main limitations of static word embeddings or word vector space models is that words with multiple meanings are conflated into a single representation (a single vector in the semantic space). In other words, polysemy and homonymy are not handled properly. For example, in the sentence "The club I tried yesterday was great!", it is not clear if the term club is related to the word sense of a club sandwich, clubhouse, golf club, or any other sense that club might have. The necessity to accommodate multiple meanings per word in different vectors (multi-sense embeddings) is the motivation for several contributions in NLP to split single-sense embeddings into multi-sense ones.[32][33]

Most approaches that produce multi-sense embeddings can be divided into two main categories for their word sense representation, i.e., unsupervised and knowledge-based.[34] Based on word2vec skip-gram, Multi-Sense Skip-Gram (MSSG)[35] performs word-sense discrimination and embedding simultaneously, improving its training time, while assuming a specific number of senses for each word. In the Non-Parametric Multi-Sense Skip-Gram (NP-MSSG) this number can vary depending on each word. Combining the prior knowledge of lexical databases (e.g., WordNet, ConceptNet, BabelNet), word embeddings and word sense disambiguation, Most Suitable Sense Annotation (MSSA)[36] labels word-senses through an unsupervised and knowledge-based approach, considering a word's context in a pre-defined sliding window. Once the words are disambiguated, they can be used in a standard word embeddings technique, so multi-sense embeddings are produced. MSSA architecture allows the disambiguation and annotation process to be performed recurrently in a self-improving manner.[37]

The use of multi-sense embeddings is known to improve performance in several NLP tasks, such as part-of-speech tagging, semantic relation identification, semantic relatedness, named entity recognition and sentiment analysis.[38][39]

As of the late 2010s, contextually-meaningful embeddings such as ELMo and BERT have been developed.[40] Unlike static word embeddings, these embeddings are at the token-level, in that each occurrence of a word has its own embedding. These embeddings better reflect the multi-sense nature of words, because occurrences of a word in similar contexts are situated in similar regions of BERT’s embedding space.[41][42]

For biological sequences: BioVectors

[edit]

Word embeddings for n-grams in biological sequences (e.g. DNA, RNA, and Proteins) for bioinformatics applications have been proposed by Asgari and Mofrad.[43] Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors (ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene sequences, this representation can be widely used in applications of deep learning in proteomics and genomics. The results presented by Asgari and Mofrad[43] suggest that BioVectors can characterize biological sequences in terms of biochemical and biophysical interpretations of the underlying patterns.

Game design

[edit]

Word embeddings with applications in game design have been proposed by Rabii and Cook[44] as a way to discover emergent gameplay using logs of gameplay data. The process requires transcribing actions that occur during a game within a formal language and then using the resulting text to create word embeddings. The results presented by Rabii and Cook[44] suggest that the resulting vectors can capture expert knowledge about games like chess that are not explicitly stated in the game's rules.

Sentence embeddings

[edit]

The idea has been extended to embeddings of entire sentences or even documents, e.g. in the form of the thought vectors concept. In 2015, some researchers suggested "skip-thought vectors" as a means to improve the quality of machine translation.[45] A more recent and popular approach for representing sentences is Sentence-BERT, or SentenceTransformers, which modifies pre-trained BERT with the use of siamese and triplet network structures.[46]

Software

[edit]

Software for training and using word embeddings includes Tomá? Mikolov's Word2vec, Stanford University's GloVe,[47] GN-GloVe,[48] Flair embeddings,[38] AllenNLP's ELMo,[49] BERT,[50] fastText, Gensim,[51] Indra,[52] and Deeplearning4j. Principal Component Analysis (PCA) and T-Distributed Stochastic Neighbour Embedding (t-SNE) are both used to reduce the dimensionality of word vector spaces and visualize word embeddings and clusters.[53]

Examples of application

[edit]

For instance, the fastText is also used to calculate word embeddings for text corpora in Sketch Engine that are available online.[54]

Ethical implications

[edit]

Word embeddings may contain the biases and stereotypes contained in the trained dataset, as Bolukbasi et al. points out in the 2016 paper “Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings” that a publicly available (and popular) word2vec embedding trained on Google News texts (a commonly used data corpus), which consists of text written by professional journalists, still shows disproportionate word associations reflecting gender and racial biases when extracting word analogies.[55] For example, one of the analogies generated using the aforementioned word embedding is “man is to computer programmer as woman is to homemaker”.[56][57]

Research done by Jieyu Zhou et al. shows that the applications of these trained word embeddings without careful oversight likely perpetuates existing bias in society, which is introduced through unaltered training data. Furthermore, word embeddings can even amplify these biases .[58][59]

See also

[edit]

References

[edit]
  1. ^ Jurafsky, Daniel; H. James, Martin (2000). Speech and language processing : an introduction to natural language processing, computational linguistics, and speech recognition. Upper Saddle River, N.J.: Prentice Hall. ISBN 978-0-13-095069-7.
  2. ^ Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg; Dean, Jeffrey (2013). "Distributed Representations of Words and Phrases and their Compositionality". arXiv:1310.4546 [cs.CL].
  3. ^ Lebret, Rémi; Collobert, Ronan (2013). "Word Emdeddings through Hellinger PCA". Conference of the European Chapter of the Association for Computational Linguistics (EACL). Vol. 2014. arXiv:1312.5542.
  4. ^ Levy, Omer; Goldberg, Yoav (2014). Neural Word Embedding as Implicit Matrix Factorization (PDF). NIPS.
  5. ^ Li, Yitan; Xu, Linli (2015). Word Embedding Revisited: A New Representation Learning and Explicit Matrix Factorization Perspective (PDF). Int'l J. Conf. on Artificial Intelligence (IJCAI).
  6. ^ Globerson, Amir (2007). "Euclidean Embedding of Co-occurrence Data" (PDF). Journal of Machine Learning Research.
  7. ^ Qureshi, M. Atif; Greene, Derek (2025-08-06). "EVE: explainable vector based embedding technique using Wikipedia". Journal of Intelligent Information Systems. 53: 137–165. arXiv:1702.06891. doi:10.1007/s10844-018-0511-x. ISSN 0925-9902. S2CID 10656055.
  8. ^ Levy, Omer; Goldberg, Yoav (2014). Linguistic Regularities in Sparse and Explicit Word Representations (PDF). CoNLL. pp. 171–180.
  9. ^ Socher, Richard; Bauer, John; Manning, Christopher; Ng, Andrew (2013). Parsing with compositional vector grammars (PDF). Proc. ACL Conf. Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06.
  10. ^ Socher, Richard; Perelygin, Alex; Wu, Jean; Chuang, Jason; Manning, Chris; Ng, Andrew; Potts, Chris (2013). Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank (PDF). EMNLP.
  11. ^ Sahlgren, Magnus. "A brief history of word embeddings".
  12. ^ Firth, J.R. (1957). "A synopsis of linguistic theory 1930–1955". Studies in Linguistic Analysis: 1–32. Reprinted in F.R. Palmer, ed. (1968). Selected Papers of J.R. Firth 1952–1959. London: Longman.{{cite book}}: CS1 maint: publisher location (link)
  13. ^ Luhn, H.P. (1953). "A New Method of Recording and Searching Information". American Documentation. 4: 14–16. doi:10.1002/asi.5090040104.
  14. ^ Osgood, C.E.; Suci, G.J.; Tannenbaum, P.H. (1957). The Measurement of Meaning. University of Illinois Press.
  15. ^ Salton, Gerard (1962). "Some experiments in the generation of word and document associations". Proceedings of the December 4-6, 1962, fall joint computer conference on - AFIPS '62 (Fall). pp. 234–250. doi:10.1145/1461518.1461544. ISBN 9781450378796. S2CID 9937095. {{cite book}}: ISBN / Date incompatibility (help)
  16. ^ Salton, Gerard; Wong, A; Yang, C S (1975). "A Vector Space Model for Automatic Indexing". Communications of the ACM. 18 (11): 613–620. doi:10.1145/361219.361220. hdl:1813/6057. S2CID 6473756.
  17. ^ Dubin, David (2004). "The most influential paper Gerard Salton never wrote". Archived from the original on 18 October 2020. Retrieved 18 October 2020.
  18. ^ Kanerva, Pentti, Kristoferson, Jan and Holst, Anders (2000): Random Indexing of Text Samples for Latent Semantic Analysis, Proceedings of the 22nd Annual Conference of the Cognitive Science Society, p. 1036. Mahwah, New Jersey: Erlbaum, 2000.
  19. ^ Karlgren, Jussi; Sahlgren, Magnus (2001). Uesaka, Yoshinori; Kanerva, Pentti; Asoh, Hideki (eds.). "From words to understanding". Foundations of Real-World Intelligence. CSLI Publications: 294–308.
  20. ^ Sahlgren, Magnus (2005) An Introduction to Random Indexing, Proceedings of the Methods and Applications of Semantic Indexing Workshop at the 7th International Conference on Terminology and Knowledge Engineering, TKE 2005, August 16, Copenhagen, Denmark
  21. ^ Sahlgren, Magnus, Holst, Anders and Pentti Kanerva (2008) Permutations as a Means to Encode Order in Word Space, In Proceedings of the 30th Annual Conference of the Cognitive Science Society: 1300–1305.
  22. ^ Bengio, Yoshua; Réjean, Ducharme; Pascal, Vincent (2000). "A Neural Probabilistic Language Model" (PDF). NeurIPS.
  23. ^ Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal; Jauvin, Christian (2003). "A Neural Probabilistic Language Model" (PDF). Journal of Machine Learning Research. 3: 1137–1155.
  24. ^ Bengio, Yoshua; Schwenk, Holger; Senécal, Jean-Sébastien; Morin, Fréderic; Gauvain, Jean-Luc (2006). "A Neural Probabilistic Language Model". Studies in Fuzziness and Soft Computing. Vol. 194. Springer. pp. 137–186. doi:10.1007/3-540-33486-6_6. ISBN 978-3-540-30609-2.
  25. ^ Vinkourov, Alexei; Cristianini, Nello; Shawe-Taylor, John (2002). Inferring a semantic representation of text via cross-language correlation analysis (PDF). Advances in Neural Information Processing Systems. Vol. 15.
  26. ^ Lavelli, Alberto; Sebastiani, Fabrizio; Zanoli, Roberto (2004). Distributional term representations: an experimental comparison. 13th ACM International Conference on Information and Knowledge Management. pp. 615–624. doi:10.1145/1031171.1031284.
  27. ^ Roweis, Sam T.; Saul, Lawrence K. (2000). "Nonlinear Dimensionality Reduction by Locally Linear Embedding". Science. 290 (5500): 2323–6. Bibcode:2000Sci...290.2323R. CiteSeerX 10.1.1.111.3313. doi:10.1126/science.290.5500.2323. PMID 11125150. S2CID 5987139.
  28. ^ he:????? ???'??
  29. ^ Morin, Fredric; Bengio, Yoshua (2005). "Hierarchical probabilistic neural network language model" (PDF). In Cowell, Robert G.; Ghahramani, Zoubin (eds.). Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research. Vol. R5. pp. 246–252.
  30. ^ Mnih, Andriy; Hinton, Geoffrey (2009). "A Scalable Hierarchical Distributed Language Model". Advances in Neural Information Processing Systems. 21 (NIPS 2008). Curran Associates, Inc.: 1081–1088.
  31. ^ "word2vec". Google Code Archive. Retrieved 23 July 2021.
  32. ^ Reisinger, Joseph; Mooney, Raymond J. (2010). Multi-Prototype Vector-Space Models of Word Meaning. Vol. Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Los Angeles, California: Association for Computational Linguistics. pp. 109–117. ISBN 978-1-932432-65-7. Retrieved October 25, 2019.
  33. ^ Huang, Eric. (2012). Improving word representations via global context and multiple word prototypes. OCLC 857900050.
  34. ^ Camacho-Collados, Jose; Pilehvar, Mohammad Taher (2018). "From Word to Sense Embeddings: A Survey on Vector Representations of Meaning". arXiv:1805.04032 [cs.CL].
  35. ^ Neelakantan, Arvind; Shankar, Jeevan; Passos, Alexandre; McCallum, Andrew (2014). "Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space". Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 1059–1069. arXiv:1504.06654. doi:10.3115/v1/d14-1113. S2CID 15251438.
  36. ^ Ruas, Terry; Grosky, William; Aizawa, Akiko (2025-08-06). "Multi-sense embeddings through a word sense disambiguation process". Expert Systems with Applications. 136: 288–303. arXiv:2101.08700. doi:10.1016/j.eswa.2019.06.026. hdl:2027.42/145475. ISSN 0957-4174. S2CID 52225306.
  37. ^ Agre, Gennady; Petrov, Daniel; Keskinova, Simona (2025-08-06). "Word Sense Disambiguation Studio: A Flexible System for WSD Feature Extraction". Information. 10 (3): 97. doi:10.3390/info10030097. ISSN 2078-2489.
  38. ^ a b Akbik, Alan; Blythe, Duncan; Vollgraf, Roland (2018). "Contextual String Embeddings for Sequence Labeling". Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico, USA: Association for Computational Linguistics: 1638–1649.
  39. ^ Li, Jiwei; Jurafsky, Dan (2015). "Do Multi-Sense Embeddings Improve Natural Language Understanding?". Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 1722–1732. arXiv:1506.01070. doi:10.18653/v1/d15-1200. S2CID 6222768.
  40. ^ Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina (June 2019). "Proceedings of the 2019 Conference of the North". Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics: 4171–4186. doi:10.18653/v1/N19-1423. S2CID 52967399.
  41. ^ Lucy, Li, and David Bamman. "Characterizing English variation across social media communities with BERT." Transactions of the Association for Computational Linguistics 9 (2021): 538-556.
  42. ^ Reif, Emily, Ann Yuan, Martin Wattenberg, Fernanda B. Viegas, Andy Coenen, Adam Pearce, and Been Kim. "Visualizing and measuring the geometry of BERT." Advances in Neural Information Processing Systems 32 (2019).
  43. ^ a b Asgari, Ehsaneddin; Mofrad, Mohammad R.K. (2015). "Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics". PLOS ONE. 10 (11): e0141287. arXiv:1503.05140. Bibcode:2015PLoSO..1041287A. doi:10.1371/journal.pone.0141287. PMC 4640716. PMID 26555596.
  44. ^ a b Rabii, Younès; Cook, Michael (2025-08-06). "Revealing Game Dynamics via Word Embeddings of Gameplay Data". Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. 17 (1): 187–194. doi:10.1609/aiide.v17i1.18907. ISSN 2334-0924. S2CID 248175634.
  45. ^ Kiros, Ryan; Zhu, Yukun; Salakhutdinov, Ruslan; Zemel, Richard S.; Torralba, Antonio; Urtasun, Raquel; Fidler, Sanja (2015). "skip-thought vectors". arXiv:1506.06726 [cs.CL].
  46. ^ Reimers, Nils, and Iryna Gurevych. "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks." In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982-3992. 2019.
  47. ^ "GloVe".
  48. ^ Zhao, Jieyu; et al. (2018) (2018). "Learning Gender-Neutral Word Embeddings". arXiv:1809.01496 [cs.CL].
  49. ^ "Elmo". 16 October 2024.
  50. ^ Pires, Telmo; Schlinger, Eva; Garrette, Dan (2025-08-06). "How multilingual is Multilingual BERT?". arXiv:1906.01502 [cs.CL].
  51. ^ "Gensim".
  52. ^ "Indra". GitHub. 2025-08-06.
  53. ^ Ghassemi, Mohammad; Mark, Roger; Nemati, Shamim (2015). "A visualization of evolving clinical sentiment using vector representations of clinical notes" (PDF). 2015 Computing in Cardiology Conference (CinC). Vol. 2015. pp. 629–632. doi:10.1109/CIC.2015.7410989. ISBN 978-1-5090-0685-4. PMC 5070922. PMID 27774487.
  54. ^ "Embedding Viewer". Embedding Viewer. Lexical Computing. Archived from the original on 8 February 2018. Retrieved 7 Feb 2018.
  55. ^ Bolukbasi, Tolga; Chang, Kai-Wei; Zou, James; Saligrama, Venkatesh; Kalai, Adam (2016). "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings". arXiv:1607.06520 [cs.CL].
  56. ^ Bolukbasi, Tolga; Chang, Kai-Wei; Zou, James; Saligrama, Venkatesh; Kalai, Adam (2025-08-06). "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings". arXiv:1607.06520 [cs.CL].
  57. ^ Dieng, Adji B.; Ruiz, Francisco J. R.; Blei, David M. (2020). "Topic Modeling in Embedding Spaces". Transactions of the Association for Computational Linguistics. 8: 439–453. arXiv:1907.04907. doi:10.1162/tacl_a_00325.
  58. ^ Zhao, Jieyu; Wang, Tianlu; Yatskar, Mark; Ordonez, Vicente; Chang, Kai-Wei (2017). "Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints". Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. pp. 2979–2989. doi:10.18653/v1/D17-1323.
  59. ^ Petreski, Davor; Hashim, Ibrahim C. (2025-08-06). "Word embeddings are biased. But whose bias are they reflecting?". AI & Society. 38 (2): 975–982. doi:10.1007/s00146-022-01443-w. ISSN 1435-5655. S2CID 249112516.
小的五行属什么 黑枸杞和什么一起泡水喝比较好 惊什么失什么 怕空调冷风什么原因 胆结石吃什么可以化掉结石
什么水果对眼睛好 吃什么可以帮助睡眠 碱性磷酸酶是什么意思 尿急憋不住尿是什么原因 棋逢对手下一句是什么
人参什么时候吃最好 朝鲜说什么语言 甲状腺结节吃什么药 封印是什么意思 蝉吃什么食物
世界上最多笔画的字是什么 尿酸查什么 大便出血是什么原因引起的 梦见呕吐是什么意思 女人内心强大说明什么
皮是什么结构1949doufunao.com 小米是什么米hcv8jop9ns4r.cn 数字绘画是什么bfb118.com 鸡肉不能和什么一起吃jingluanji.com 什么颜色加什么颜色是黑色hcv9jop0ns1r.cn
条件致病菌是什么意思dajiketang.com 血管狭窄吃什么药inbungee.com 查肝炎做什么检查项目hcv8jop7ns7r.cn 高铁二等座是什么意思hcv8jop6ns8r.cn 罗贯中是什么朝代的hlguo.com
什么属于发物hcv9jop3ns6r.cn 吃什么水果对心脏有好处hcv9jop1ns3r.cn 宫颈小有什么影响hcv7jop9ns9r.cn 新生儿为什么有黄疸hcv8jop0ns3r.cn 手掌发热是什么原因hcv9jop6ns2r.cn
岑字五行属什么hcv7jop9ns9r.cn 4月26日是什么星座naasee.com 什么呀cj623037.com 什么是火碱hcv9jop2ns9r.cn 吃桂圆干有什么好处和坏处hcv9jop0ns3r.cn
百度