生理期吃什么水果比较好| 回乡偶书的偶书是什么意思| 疳积是什么| 筒子骨炖什么好吃| 户口是什么意思| 慢性萎缩性胃炎伴糜烂吃什么药| 姐姐的女儿叫什么称呼| 做梦梦见前男友是什么意思| 王俊凯什么星座| 颈椎曲度变直有什么症状| 上午十点是什么时辰| 女性私处为什么会变黑| 交期是什么意思| 尿糖一个加号是什么意思| 耳膜破了有什么症状| 韭菜花炒什么好吃| 08是什么生肖| 生日送百合花代表什么| 颈椎病吃什么药最好效果| 大象的天敌是什么动物| 84年是什么命| 大便有酸味是什么原因| 8月12日是什么星座| 欧豪资源为什么这么好| 女人右下巴有痣代表什么| 浅笑嫣然是什么意思| gender什么意思| 七月八日是什么星座| 68年猴五行属什么| 恩施玉露是什么茶| 尿道刺痛吃什么药| 赵云的马叫什么| 肝脾肿大是什么症状| 屁股痛挂什么科| 什么样的心情| 软水是什么水| 血小板下降是什么原因| 肱骨外上髁炎用什么药| 什么馅饺子好吃| 牛大力泡酒有什么功效| 肝血管瘤有什么症状| 景页读什么| 少一个睾丸有什么影响| 杏林是什么意思| 空调自动关机是什么原因| 兵马俑什么时候发现的| 拉肚子拉水是什么原因| 什么人骗别人也骗自己| 激光脱毛对人体有没有什么危害| 射手属于什么象星座| 中药什么时候吃最好| 仙人跳什么意思| 什么叫绝对值| 小孩办身份证需要什么材料| 晚上9点半是什么时辰| 阴道内痒是什么原因| 痛经 吃什么| 早上口干舌燥是什么原因| 肠胀气是什么原因| 鸡涌是什么意思| 门特是什么意思| 都市丽人是什么意思| 3月28号是什么星座| 结婚登记需要什么| 08年属什么生肖| 鹅蛋孕妇吃有什么好处| 吽是什么意思| 往来账是什么意思| 耳膜穿孔吃什么长得快| 三和大神什么意思| 化疗后骨髓抑制是什么意思| h是什么牌子的皮带| 吃什么能让头发变黑| 前列腺增生有什么症状| mfd是什么意思| 脸上长痣是什么原因造成的| 大姨妈很多血块是什么原因| 维生素b4又叫什么| 滴虫性阴道炎用什么药好| 小狗的尾巴有什么作用| cos代表什么意思| 宫颈多发囊肿是什么意思| 胎儿什么时候入盆| 断更是什么意思| 迎字五行属什么| 胆毒是什么原因引起的| 缺什么补什么| 眼睛里有红血丝是什么原因| 瘘管是什么症状| 丙氨酸氨基转移酶偏高吃什么药| 烤乳猪用的是什么猪| 省委委员是什么级别| 胎儿肾盂分离是什么意思| 低温是什么原因引起的| 正常是什么意思| 月牙是什么意思| 嗑药是什么意思| 缺钾是什么原因引起| 12月13号什么星座| 康斯坦丁是什么意思| 子宫肌瘤有什么症状表现| 孕囊是什么样的图片| female什么意思| 梦到自己开车是什么意思| 卒中优先是什么意思| 慧根是什么意思| 1987年属什么今年多大| 过敏性紫癜看什么科| 什么是人棉| 2003年是什么年| 愿力是什么意思| 胎儿停止发育是什么原因造成的| 舌头肥大是什么原因| 梦见买面条有什么预兆| 咪咪是什么| 玄米是什么米| 娘酒是什么酒| 木瓜是什么季节的| 血小板计数偏低是什么意思| 198是什么意思| 堤防是什么意思| 什么时候开始孕吐| 美的本质是什么| 中午吃什么饭| 7月7日什么星座| 肝衰竭是什么原因引起的| 肠道菌群失调有什么症状| 苹果浓缩汁是什么| 什么是童话| 科目一和科目四有什么区别| 为什么种牙那么贵| 经期不能吃什么水果| 虎皮膏药有什么功效| 夏至未至什么意思| 消停是什么意思| 碳酸氢钠是什么添加剂| 什么时候可以领退休金| 只是当时已惘然是什么意思| 吃一个海参相当于吃了什么| 供奉观音菩萨有什么讲究| 无脑是什么意思| 冰箱什么牌子最好| 百什么争什么| cas是什么意思| 琥珀酱是什么味| 熊猫是什么科| 五味子有什么作用| 七夕节干什么| 为什么睡觉会流口水| 心无什么用| 头七有什么规矩| 为什么会突然打嗝| 唐僧原名叫什么| 尾骨疼是什么原因| 山楂什么季节成熟| 骨折用什么药恢复快| 射手座最配什么星座| 茉莉花茶属于什么茶| 不什么一什么| peony是什么意思| buffalo是什么牌子| 帮凶是什么意思| 11月是什么星座| 胃痛挂什么科| polo衫配什么裤子好看| 宝宝咳嗽流鼻涕吃什么药| 晚上吃什么最健康| iwc手表是什么牌子| 熹字五行属什么| 七六年属什么| 桃子什么季节成熟| 皱褶什么意思| 阳性阴性是什么意思| 策反是什么意思| 桔梗是什么东西| 什么叫胆汁反流性胃炎| 吃什么缓解孕吐| 吃什么会影响验孕棒检验结果| 反射弧长是什么意思| 血小板低会引发什么病| 活字印刷术是什么时候发明的| 青龙是什么意思| 肺部结节灶是什么意思啊| 负荷是什么意思| 就诊是什么意思| 放化疗期间吃什么好| 尿道口有灼热感是什么原因| 飞机下降时耳朵疼是什么原因| 办结婚证需要什么| food什么意思| 胸腔疼痛是什么原因| 欧诗漫是个什么档次| 淋巴肿瘤吃什么食物好| 为什么睡不着觉| 尿茶色尿是什么原因| gpr是什么意思| 为什么会得鼻炎| 故事梗概是什么意思| 越什么越什么的词语| 每天放很多屁是什么原因| 治疗幽门螺旋杆菌的四联药是什么| 什么叫一桌餐| 脑溢血是什么原因| 胸骨疼挂什么科| 飞机不能带什么东西| 兜售是什么意思| 喝咖啡困倦是什么原因| 小猫泪痕重什么原因| 男女更年期分别在什么年龄| 屋漏偏逢连夜雨是什么意思| 什么叫宫腔粘连| 依西美坦最佳服用时间是什么时间| 属蛇与什么属相相克| 眼睛无神呆滞什么原因| 办护照需要什么证件| 菠菜什么时候种最合适| 着床出血什么时候出现| 血压低吃什么中成药| 龟头炎看什么科| eps是什么意思| 感悟是什么意思| ed是什么病| 一个月一个泉是什么字| 腰间盘膨出吃什么药效果好| 脑血管堵塞会有什么后果| 感恩节吃什么| 血小板分布宽度低是什么原因| 痰是绿色的是什么原因| 拉绿屎是什么原因| 曹操原名叫什么| 公元前是什么意思| 心动过速是什么原因| 鸡男配什么属相最好| 胃胀痛吃什么药| 牙龈无缘无故出血是什么原因| 气血虚是什么意思| 束手无策是什么意思| 蛋白质阳性什么意思| 男人吃洋葱有什么好处| 中心句是什么意思| 什么叫子宫腺肌症| 液氨是什么| dpl是什么意思| 七一什么节| 过敏忌口不能吃什么| 舒字五行属什么的| badus是什么牌子的手表| 逝者如斯夫是什么意思| 89属什么| 粉色是什么颜色配成的| 女人吃什么水果最好| 高压是什么意思| 3岁小孩不会说话是什么原因| 内能与什么有关| 香菇炒什么好吃| 黄色五行属什么| 贫血吃什么水果补血最快| 嗓子疼吃什么水果好| 什么的足球| 子宫脱垂有什么症状| 低血压吃什么水果| 小孩办身份证需要什么材料| 葡萄糖是什么意思| 龟苓膏有什么作用| 百度Jump to content

习近平同喀麦隆总统比亚举行会谈

From Wikipedia, the free encyclopedia
百度   第三层次2000名,为35岁以下具有较大发展潜力的青年拔尖人才。

In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generally not effective) method for constructing models of any set of sentences that is finitely consistent.

The compactness theorem for the propositional calculus is a consequence of Tychonoff's theorem (which says that the product of compact spaces is compact) applied to compact Stone spaces,[1] hence the theorem's name. Likewise, it is analogous to the finite intersection property characterization of compactness in topological spaces: a collection of closed sets in a compact space has a non-empty intersection if every finite subcollection has a non-empty intersection.

The compactness theorem is one of the two key properties, along with the downward L?wenheim–Skolem theorem, that is used in Lindstr?m's theorem to characterize first-order logic. Although there are some generalizations of the compactness theorem to non-first-order logics, the compactness theorem itself does not hold in them, except for a very limited number of examples.[2]

History

[edit]

Kurt G?del proved the countable compactness theorem in 1930. Anatoly Maltsev proved the uncountable case in 1936.[3][4]

Applications

[edit]

The compactness theorem has many applications in model theory; a few typical results are sketched here.

Robinson's principle

[edit]

The compactness theorem implies the following result, stated by Abraham Robinson in his 1949 dissertation.

Robinson's principle:[5][6] If a first-order sentence holds in every field of characteristic zero, then there exists a constant such that the sentence holds for every field of characteristic larger than This can be seen as follows: suppose is a sentence that holds in every field of characteristic zero. Then its negation together with the field axioms and the infinite sequence of sentences is not satisfiable (because there is no field of characteristic 0 in which holds, and the infinite sequence of sentences ensures any model would be a field of characteristic 0). Therefore, there is a finite subset of these sentences that is not satisfiable. must contain because otherwise it would be satisfiable. Because adding more sentences to does not change unsatisfiability, we can assume that contains the field axioms and, for some the first sentences of the form Let contain all the sentences of except Then any field with a characteristic greater than is a model of and together with is not satisfiable. This means that must hold in every model of which means precisely that holds in every field of characteristic greater than This completes the proof.

The Lefschetz principle, one of the first examples of a transfer principle, extends this result. A first-order sentence in the language of rings is true in some (or equivalently, in every) algebraically closed field of characteristic 0 (such as the complex numbers for instance) if and only if there exist infinitely many primes for which is true in some algebraically closed field of characteristic in which case is true in all algebraically closed fields of sufficiently large non-0 characteristic [5] One consequence is the following special case of the Ax–Grothendieck theorem: all injective complex polynomials are surjective[5] (indeed, it can even be shown that its inverse will also be a polynomial).[7] In fact, the surjectivity conclusion remains true for any injective polynomial where is a finite field or the algebraic closure of such a field.[7]

Upward L?wenheim–Skolem theorem

[edit]

A second application of the compactness theorem shows that any theory that has arbitrarily large finite models, or a single infinite model, has models of arbitrary large cardinality (this is the Upward L?wenheim–Skolem theorem). So for instance, there are nonstandard models of Peano arithmetic with uncountably many 'natural numbers'. To achieve this, let be the initial theory and let be any cardinal number. Add to the language of one constant symbol for every element of Then add to a collection of sentences that say that the objects denoted by any two distinct constant symbols from the new collection are distinct (this is a collection of sentences). Since every finite subset of this new theory is satisfiable by a sufficiently large finite model of or by any infinite model, the entire extended theory is satisfiable. But any model of the extended theory has cardinality at least .

Non-standard analysis

[edit]

A third application of the compactness theorem is the construction of nonstandard models of the real numbers, that is, consistent extensions of the theory of the real numbers that contain "infinitesimal" numbers. To see this, let be a first-order axiomatization of the theory of the real numbers. Consider the theory obtained by adding a new constant symbol to the language and adjoining to the axiom and the axioms for all positive integers Clearly, the standard real numbers are a model for every finite subset of these axioms, because the real numbers satisfy everything in and, by suitable choice of can be made to satisfy any finite subset of the axioms about By the compactness theorem, there is a model that satisfies and also contains an infinitesimal element

A similar argument, this time adjoining the axioms etc., shows that the existence of numbers with infinitely large magnitudes cannot be ruled out by any axiomatization of the reals.[8]

It can be shown that the hyperreal numbers satisfy the transfer principle:[9] a first-order sentence is true of if and only if it is true of

Proofs

[edit]

One can prove the compactness theorem using G?del's completeness theorem, which establishes that a set of sentences is satisfiable if and only if no contradiction can be proven from it. Since proofs are always finite and therefore involve only finitely many of the given sentences, the compactness theorem follows. In fact, the compactness theorem is equivalent to G?del's completeness theorem, and both are equivalent to the Boolean prime ideal theorem, a weak form of the axiom of choice.[10]

G?del originally proved the compactness theorem in just this way, but later some "purely semantic" proofs of the compactness theorem were found; that is, proofs that refer to truth instead of provability. One of those proofs relies on ultraproducts hinging on the axiom of choice as follows:

Proof: Fix a first-order language and let be a collection of -sentences such that every finite subcollection of -sentences, of it has a model Also let be the direct product of the structures and be the collection of finite subsets of For each let The family of all of these sets generates a proper filter, so there is an ultrafilter containing all sets of the form

Now for any sentence in

  • the set is in
  • whenever then hence holds in
  • the set of all with the property that holds in is a superset of hence also in

?o?'s theorem now implies that holds in the ultraproduct So this ultraproduct satisfies all formulas in

See also

[edit]

Notes

[edit]
  1. ^ Truss 1997.
  2. ^ J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985) [1], in particular, Makowsky, J. A. Chapter XVIII: Compactness, Embeddings and Definability. 645--716, see Theorems 4.5.9, 4.6.12 and Proposition 4.6.9. For compact logics for an extended notion of model see Ziegler, M. Chapter XV: Topological Model Theory. 557--577. For logics without the relativization property it is possible to have simultaneously compactness and interpolation, while the problem is still open for logics with relativization. See Xavier Caicedo, A Simple Solution to Friedman's Fourth Problem, J. Symbolic Logic, Volume 51, Issue 3 (1986), 778-784.doi:10.2307/2274031 JSTOR 2274031
  3. ^ Vaught, Robert L.: "Alfred Tarski's work in model theory". Journal of Symbolic Logic 51 (1986), no. 4, 869–882
  4. ^ Robinson, A.: Non-standard analysis. North-Holland Publishing Co., Amsterdam 1966. page 48.
  5. ^ a b c Marker 2002, pp. 40–43.
  6. ^ Gowers, Barrow-Green & Leader 2008, pp. 639–643.
  7. ^ a b Terence, Tao (7 March 2009). "Infinite fields, finite fields, and the Ax-Grothendieck theorem".
  8. ^ Goldblatt 1998, pp. 10–11.
  9. ^ Goldblatt 1998, p. 11.
  10. ^ See Hodges (1993).

References

[edit]
[edit]
2.20什么星座 支原体阳性什么意思 会所是什么意思 胃病挂什么科 发offer是什么意思
查心梗应该做什么检查 什么是乳酸堆积 殚精竭虑什么意思 七月一号什么星座 老实是什么意思
心脏早搏有什么危害 龈颊沟在什么位置图片 阴囊潮湿吃什么食物 寅时是什么时间 子宫后位什么意思
3月17日是什么星座的 乙肝两对半15阳性是什么意思 什么是幻听 失眠多梦吃什么药效果最好 hc是胎儿的什么意思
人生三件大事是指什么hcv9jop2ns6r.cn 一直不来月经是什么原因hcv8jop9ns6r.cn 打嗝不停是什么病前兆hcv8jop2ns1r.cn Valentino什么牌子hcv9jop6ns7r.cn 荏苒是什么意思hcv9jop2ns9r.cn
八月十八号是什么星座hcv9jop0ns5r.cn 总是打哈欠是什么原因hcv8jop1ns8r.cn 教师节给老师送什么礼物gangsutong.com 尿潜血是什么原因hcv9jop6ns4r.cn 背上有痣代表什么hcv9jop6ns1r.cn
三下乡是什么意思hcv8jop5ns9r.cn 直男是什么hcv8jop5ns2r.cn 嗜酸性肉芽肿是什么病hcv9jop3ns2r.cn 胚胎停育有什么症状hcv8jop9ns3r.cn 避孕套有什么危害hcv7jop5ns3r.cn
左脸颊有痣代表什么hcv8jop2ns1r.cn 发什么发什么hcv8jop0ns1r.cn 血型o型rh阳性是什么意思hcv8jop2ns8r.cn 低血糖是什么原因引起的hlguo.com 什么的晚霞hcv8jop5ns4r.cn
百度