人体是由什么组成的| 当枪使什么意思| 媱五行属什么| 三七长什么样| 6月16日是什么星座| 周公解梦梦见蛇是什么意思| itp是什么意思| 最好的假牙是什么材质| 小猫不能吃什么| 验精挂什么科室| 为什么会肌酐高| 文盲是什么意思| 草莽是什么意思| 叶赫那拉氏是什么旗| 咳嗽变异性哮喘吃什么药| 暇步士属于什么档次| 流鼻血是什么原因引起的| 月经老是提前是什么原因| 梦见前夫是什么兆头| 传教士是什么姿势| 人被老鼠咬了什么预兆| 佛系是什么意思啊| 涌泉穴在什么地方| 即日是什么意思| 反目成仇是什么意思| 女性为什么会得疱疹| 黑头发有什么好处脑筋急转弯| 孕期阴道炎可以用什么药| 白带豆腐渣状用什么药| 中秋节是什么时候| 夏字五行属什么| 做梦掉牙齿是什么预兆| 便秘吃什么药能根治| 甲功四项是什么检查项目| 真数是什么| 什么护肤产品补水最好| 牙神经痛吃什么药| 淋巴结反应性增生是什么意思| 春饼卷什么菜好吃| charleskeith什么牌子| 全期猫粮什么意思| 肉蔻是什么样子| 腹胀腹痛吃什么药| 天天拉肚子是什么原因| 隆字五行属什么| 才高八斗代表什么生肖| 低钠盐是什么意思| 鼻窦炎有什么症状表现| 男士感染霉菌用什么药| 巨蟹座和什么座最配| 梦见收稻谷有什么预兆| 南京有什么特产| 急性呼吸道感染是什么引起的| 不耐受和过敏有什么区别| 黄豆什么时候播种| 内秀是什么性格的人| 1934年属什么生肖| 肚脐眼痛什么原因| 尿酸高可以吃什么水果| 四川属于什么气候| 怀姜是什么姜| 短装是什么意思| 阳字属于五行属什么| 肠易激综合症用什么药能治好| 兰花什么时候开花| 小太阳是什么意思| 男性尿路感染吃什么药| TB是什么缩写| 美妞是什么意思| 双向什么意思| 投资公司是做什么的| 陶土色大便是什么颜色| 人格分裂什么意思| 宫口开了有什么症状| 7.6什么星座| 买车置换是什么意思| 铁是什么元素| 什么是锆石| 喉咙痰多是什么原因造成的| 龟头炎用什么药治疗| 孕妇牙龈出血是什么原因| 6.25什么星座| 生蚝吃了有什么好处| 甲亢查什么| bpo是什么| 桥本是什么意思| 人的祖先是什么| 肚脐下面疼是什么原因| 樱菜是什么菜| 青蒜炒什么好吃| 血小板偏低是什么意思| 脸黄是什么原因| 汛期什么意思| 牛肉和什么菜包饺子好吃| 什么颜色衣服显白| 内裤发霉是什么原因| 为什么老是掉头发| 手掌心经常出汗是什么原因| 四什么八什么| 双肺纹理增强是什么意思| 霸道是什么车| 保鲜袋什么材质好| 怀孕的尿液是什么颜色| 蛹是什么| 黄芪加陈皮有什么功效| 黄疸高对婴儿有什么影响| 左侧上颌窦囊肿是什么意思| 爽约什么意思| 2002年五行属什么命| 脂肪垫是什么| 息肉样增生是什么意思| 诺如病毒吃什么食物| 条件反射是什么| 什么是c字裤| 太阳像什么| 7.10是什么日子| 氧化性是什么意思| 唐筛是什么意思| 什么原因引起痛风| 国防部部长是什么级别| 云南有什么特产| 大运流年是什么意思| 窦性心律吃什么药| 胡桃是什么| 水杨酸有什么作用| 幼儿反复发烧是什么原因| 东倒西歪是什么意思| 甘油是什么成分| 溥仪为什么没有生育能力| 胸前出汗多是什么原因| pdo是什么意思| 9月24日什么星座| 来世是什么意思| 肩颈疼痛挂什么科| 农历12月18日是什么星座| 属龙的和什么属相最配| opc是什么意思| 艾滋病吃什么药| 渣男最怕什么样的女人| 怀孕什么时候建档| 名创优品是卖什么的| 胡桃木色是什么颜色| 男生为什么喜欢女生| 鞭长莫及什么意思| 体现是什么意思| 三无产品是指什么| 虱目鱼在大陆叫什么| 闭口粉刺是什么原因引起的| 雨像什么| 犒劳自己是什么意思| gap什么意思| 反复发烧是什么原因| mfd是什么意思| 起薪是什么意思| 性格好是什么意思| 烛是什么意思| 龙和什么相冲| 梦见蛇和老鼠是什么意思| 右眼跳什么预兆| 女人内火旺喝什么降火| po医学上是什么意思| 什么样的女人招人嫉妒| 小候鸟是什么意思| 寸是什么单位| 内伤是什么意思| 海绵体充血不足吃什么药| 县长什么级别| 治疗勃起困难有什么药| 甲状腺分泌什么激素| 老人家脚肿是什么原因引起的| 挂急诊和门诊有什么区别| 炖鸡块放什么调料| 桔子什么时候成熟| 利福喷丁和利福平有什么区别| 情商是什么意思| 三点水一个条读什么| 黑户什么意思| 心绞痛挂什么科| 早上吃黄瓜有什么好处| 脾胃不好吃什么食物| 什么是造影手术| 没有痔疮大便出血是什么原因| 白俄罗斯和俄罗斯有什么区别| 最高检检察长什么级别| 鼻子挤出来的白色东西是什么| 人为什么会做噩梦| 左侧卵巢囊性回声是什么意思| 腋下发黑是什么原因| 结核感染是什么意思| 鸡肚是什么部位| 什么时候恢复高考| hr阳性是什么意思| 电镀对人体有什么危害| 平五行属什么| 结婚20年是什么婚姻| sca是什么意思| 正月开什么花| 醋蛋液主要治什么| 梦到蛇预示着什么意思| 藜芦是什么东西| 工薪阶层是什么意思| 背上长白斑是什么病的症状| 痛风吃什么蔬菜| 胃幽门螺杆菌有什么症状| 梦见补的牙齿掉了是什么意思| 儿童超敏c反应蛋白高说明什么| 喉咙干咳吃什么药| 涅盘是什么意思| 夏天有什么水果| 直肠炎吃什么药最好| 夏季感冒吃什么药| 喝酒会得什么病| 孕妇吃梨有什么好处| 尿检潜血是什么意思| 查hpv挂什么科| 政治面貌填什么| 尿潜血弱阳性是什么意思| 汗水多是什么原因| 舌苔发黄是什么原因引起的| 奶油小生什么意思| 啫喱是什么| 心火吃什么药| 五六月份是什么星座| 猴子是什么颜色| 伤官格是什么意思| 维生素b3又叫什么| 红细胞偏高有什么危害| 土猪肉和普通猪肉有什么分别| 什么的衣服| 吃钙片有什么副作用| 蜂蜜什么人不能吃| 老年人全身无力是什么原因| 天花是什么病| 手淫是什么| 烟酰胺有什么用| 九月二十是什么星座| 湿气重可以吃什么水果| 插入阴道什么感觉| 低压高什么原因导致的| 金刚钻是什么意思| 男人左手有痣代表什么| 94年属什么的| 实蛋是什么| 什么水果可以减肥刮油脂| 移动电源和充电宝有什么区别| 窦炎症是什么病| 自缢痣是什么意思| 肝转氨酶高有什么危害| 总口渴是什么原因| 猪肝有什么功效与作用| 老鸨是什么意思| 殊荣是什么意思| 做馒头用什么面粉| 白塞氏是一种什么病| 送葬后回家注意什么| 血液净化是什么意思| camel是什么颜色| 有小肚子是什么原因| 旭日阳刚为什么不火了| 吃什么减肥| 漂流穿什么衣服| 什么原因造成低血糖| ca199检查是什么意思| 左肩后背疼是什么原因| 百度Jump to content

天山·旺角广场招商签约新闻发布会圆满成功

From Wikipedia, the free encyclopedia
百度 因此我们建议产后2-3天后站立步行时可使用骨盆带,帮助骨盆恢复,松紧程度以产妇耐受为度。

Hasse diagram of logical connectives

In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula .

Common connectives include negation, disjunction, conjunction, implication, and equivalence. In standard systems of classical logic, these connectives are interpreted as truth functions, though they receive a variety of alternative interpretations in nonclassical logics. Their classical interpretations are similar to the meanings of natural language expressions such as English "not", "or", "and", and "if", but not identical. Discrepancies between natural language connectives and those of classical logic have motivated nonclassical approaches to natural language meaning as well as approaches which pair a classical compositional semantics with a robust pragmatics.

Overview

[edit]

In formal languages, truth functions are represented by unambiguous symbols. This allows logical statements to not be understood in an ambiguous way. These symbols are called logical connectives, logical operators, propositional operators, or, in classical logic, truth-functional connectives. For the rules which allow new well-formed formulas to be constructed by joining other well-formed formulas using truth-functional connectives, see well-formed formula.

Logical connectives can be used to link zero or more statements, so one can speak about n-ary logical connectives. The boolean constants True and False can be thought of as zero-ary operators. Negation is a unary connective, and so on.

Symbol, name Truth
table
Venn
diagram
Zeroary connectives (constants)
Truth/tautology 1
Falsity/contradiction 0
Unary connectives
 = 0 1
Proposition 0 1
Negation 1 0
Binary connectives
 = 0 0 1 1
 = 0 1 0 1
Conjunction 0 0 0 1
Alternative denial 1 1 1 0
Disjunction 0 1 1 1
Joint denial 1 0 0 0
Exclusive or 0 1 1 0
Biconditional 1 0 0 1
Material conditional 1 1 0 1
Material nonimplication 0 0 1 0
Converse implication 1 0 1 1
Converse nonimplication 0 1 0 0
More information

List of common logical connectives

[edit]

Commonly used logical connectives include the following ones.[1]

  • Negation (not): , , (prefix) in which is the most modern and widely used, and is also common;
  • Conjunction (and): , , (prefix) in which is the most modern and widely used;
  • Disjunction (or): , (prefix) in which is the most modern and widely used;
  • Implication (if...then): , , , (prefix) in which is the most modern and widely used, and is also common;
  • Equivalence (if and only if): , , , , (prefix) in which is the most modern and widely used, and is commonly used where is also used.

For example, the meaning of the statements it is raining (denoted by ) and I am indoors (denoted by ) is transformed, when the two are combined with logical connectives:

  • It is not raining ();
  • It is raining and I am indoors ();
  • It is raining or I am indoors ();
  • If it is raining, then I am indoors ();
  • If I am indoors, then it is raining ();
  • I am indoors if and only if it is raining ().

It is also common to consider the always true formula and the always false formula to be connective (in which case they are nullary).

  • True formula: , , (prefix), or ;
  • False formula: , , (prefix), or .

This table summarizes the terminology:

Connective In English Noun for parts Verb phrase
Conjunction Both A and B conjunct A and B are conjoined
Disjunction Either A or B, or both disjunct A and B are disjoined
Negation It is not the case that A negatum/negand A is negated
Conditional If A, then B antecedent, consequent B is implied by A
Biconditional A if, and only if, B equivalents A and B are equivalent

History of notations

[edit]
  • Negation: the symbol appeared in Heyting in 1930[2][3] (compare to Frege's symbol ? in his Begriffsschrift[4]); the symbol appeared in Russell in 1908;[5] an alternative notation is to add a horizontal line on top of the formula, as in ; another alternative notation is to use a prime symbol as in .
  • Conjunction: the symbol appeared in Heyting in 1930[2] (compare to Peano's use of the set-theoretic notation of intersection [6]); the symbol appeared at least in Sch?nfinkel in 1924;[7] the symbol comes from Boole's interpretation of logic as an elementary algebra.
  • Disjunction: the symbol appeared in Russell in 1908[5] (compare to Peano's use of the set-theoretic notation of union ); the symbol is also used, in spite of the ambiguity coming from the fact that the of ordinary elementary algebra is an exclusive or when interpreted logically in a two-element ring; punctually in the history a together with a dot in the lower right corner has been used by Peirce.[8]
  • Implication: the symbol appeared in Hilbert in 1918;[9]:?76? was used by Russell in 1908[5] (compare to Peano's ? the inverted C); appeared in Bourbaki in 1954.[10]
  • Equivalence: the symbol in Frege in 1879;[11] in Becker in 1933 (not the first time and for this see the following);[12] appeared in Bourbaki in 1954;[13] other symbols appeared punctually in the history, such as in Gentzen,[14] in Sch?nfinkel[7] or in Chazal, [15]
  • True: the symbol comes from Boole's interpretation of logic as an elementary algebra over the two-element Boolean algebra; other notations include (abbreviation for the Latin word "verum") to be found in Peano in 1889.
  • False: the symbol comes also from Boole's interpretation of logic as a ring; other notations include (rotated ) to be found in Peano in 1889.

Some authors used letters for connectives: for conjunction (German's "und" for "and") and for disjunction (German's "oder" for "or") in early works by Hilbert (1904);[16] for negation, for conjunction, for alternative denial, for disjunction, for implication, for biconditional in ?ukasiewicz in 1929.

Redundancy

[edit]

Such a logical connective as converse implication "" is actually the same as material conditional with swapped arguments; thus, the symbol for converse implication is redundant. In some logical calculi (notably, in classical logic), certain essentially different compound statements are logically equivalent. A less trivial example of a redundancy is the classical equivalence between and . Therefore, a classical-based logical system does not need the conditional operator "" if "" (not) and "" (or) are already in use, or may use the "" only as a syntactic sugar for a compound having one negation and one disjunction.

There are sixteen Boolean functions associating the input truth values and with four-digit binary outputs.[17] These correspond to possible choices of binary logical connectives for classical logic. Different implementations of classical logic can choose different functionally complete subsets of connectives.

One approach is to choose a minimal set, and define other connectives by some logical form, as in the example with the material conditional above. The following are the minimal functionally complete sets of operators in classical logic whose arities do not exceed 2:

One element
, .
Two elements
, , , , , , , , , , , , , , , , , .
Three elements
, , , , , .

Another approach is to use with equal rights connectives of a certain convenient and functionally complete, but not minimal set. This approach requires more propositional axioms, and each equivalence between logical forms must be either an axiom or provable as a theorem.

The situation, however, is more complicated in intuitionistic logic. Of its five connectives, {∧,?∨,?→,??,?⊥}, only negation "?" can be reduced to other connectives (see False (logic) § False, negation and contradiction for more). Neither conjunction, disjunction, nor material conditional has an equivalent form constructed from the other four logical connectives.

Natural language

[edit]

The standard logical connectives of classical logic have rough equivalents in the grammars of natural languages. In English, as in many languages, such expressions are typically grammatical conjunctions. However, they can also take the form of complementizers, verb suffixes, and particles. The denotations of natural language connectives is a major topic of research in formal semantics, a field that studies the logical structure of natural languages.

The meanings of natural language connectives are not precisely identical to their nearest equivalents in classical logic. In particular, disjunction can receive an exclusive interpretation in many languages. Some researchers have taken this fact as evidence that natural language semantics is nonclassical. However, others maintain classical semantics by positing pragmatic accounts of exclusivity which create the illusion of nonclassicality. In such accounts, exclusivity is typically treated as a scalar implicature. Related puzzles involving disjunction include free choice inferences, Hurford's Constraint, and the contribution of disjunction in alternative questions.

Other apparent discrepancies between natural language and classical logic include the paradoxes of material implication, donkey anaphora and the problem of counterfactual conditionals. These phenomena have been taken as motivation for identifying the denotations of natural language conditionals with logical operators including the strict conditional, the variably strict conditional, as well as various dynamic operators.

The following table shows the standard classically definable approximations for the English connectives.

English word Connective Symbol Logical gate
not negation NOT
and conjunction AND
or disjunction OR
if...then material implication IMPLY
...if converse implication
either...or exclusive disjunction XOR
if and only if biconditional XNOR
not both alternative denial NAND
neither...nor joint denial NOR
but not material nonimplication NIMPLY
not...but converse nonimplication

Properties

[edit]

Some logical connectives possess properties that may be expressed in the theorems containing the connective. Some of those properties that a logical connective may have are:

Associativity
Within an expression containing two or more of the same associative connectives in a row, the order of the operations does not matter as long as the sequence of the operands is not changed.
Commutativity
The operands of the connective may be swapped, preserving logical equivalence to the original expression.
Distributivity
A connective denoted by · distributes over another connective denoted by +, if a · (b + c) = (a · b) + (a · c) for all operands a, b, c.
Idempotence
Whenever the operands of the operation are the same, the compound is logically equivalent to the operand.
Absorption
A pair of connectives ∧, ∨ satisfies the absorption law if for all operands a, b.
Monotonicity
If f(a1, ..., an) ≤ f(b1, ..., bn) for all a1, ..., an, b1, ..., bn ∈ {0,1} such that a1b1, a2b2, ..., anbn. E.g., ∨, ∧, ?, ⊥.
Affinity
Each variable always makes a difference in the truth-value of the operation or it never makes a difference. E.g., ?, ?, , ?, ⊥.
Duality
To read the truth-value assignments for the operation from top to bottom on its truth table is the same as taking the complement of reading the table of the same or another connective from bottom to top. Without resorting to truth tables it may be formulated as g?(?a1, ..., ?an) = ?g(a1, ..., an). E.g., ?.
Truth-preserving
The compound all those arguments are tautologies is a tautology itself. E.g., ∨, ∧, ?, →, ?, ? (see validity).
Falsehood-preserving
The compound all those argument are contradictions is a contradiction itself. E.g., ∨, ∧, , ⊥, ?, ? (see validity).
Involutivity (for unary connectives)
f(f(a)) = a. E.g. negation in classical logic.

For classical and intuitionistic logic, the "=" symbol means that corresponding implications "...→..." and "...←..." for logical compounds can be both proved as theorems, and the "≤" symbol means that "...→..." for logical compounds is a consequence of corresponding "...→..." connectives for propositional variables. Some many-valued logics may have incompatible definitions of equivalence and order (entailment).

Both conjunction and disjunction are associative, commutative and idempotent in classical logic, most varieties of many-valued logic and intuitionistic logic. The same is true about distributivity of conjunction over disjunction and disjunction over conjunction, as well as for the absorption law.

In classical logic and some varieties of many-valued logic, conjunction and disjunction are dual, and negation is self-dual, the latter is also self-dual in intuitionistic logic.

Order of precedence

[edit]

As a way of reducing the number of necessary parentheses, one may introduce precedence rules: ? has higher precedence than ∧, ∧ higher than ∨, and ∨ higher than →. So for example, is short for .

Here is a table that shows a commonly used precedence of logical operators.[18][19]

Operator Precedence
1
2
3
4
5

However, not all compilers use the same order; for instance, an ordering in which disjunction is lower precedence than implication or bi-implication has also been used.[20] Sometimes precedence between conjunction and disjunction is unspecified requiring to provide it explicitly in given formula with parentheses. The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.

Table and Hasse diagram

[edit]

The 16 logical connectives can be partially ordered to produce the following Hasse diagram. The partial order is defined by declaring that if and only if whenever holds then so does

input Ainput Boutput f(A,B)X and ?XA and B?A and BBA and ?BAA xor BA or B?A and ?BA xnor B?A?A or B?BA or ?B?A or ?BX or ?X
X or ?X?A or ?BA or ?B?A or BA or B?B?AA xor BA xnor BAB?A and ?BA and ?B?A and BA and BX and ?X
  

Applications

[edit]

Logical connectives are used in computer science and in set theory.

Computer science

[edit]

A truth-functional approach to logical operators is implemented as logic gates in digital circuits. Practically all digital circuits (the major exception is DRAM) are built up from NAND, NOR, NOT, and transmission gates; see more details in Truth function in computer science. Logical operators over bit vectors (corresponding to finite Boolean algebras) are bitwise operations.

But not every usage of a logical connective in computer programming has a Boolean semantic. For example, lazy evaluation is sometimes implemented for P?∧?Q and P?∨?Q, so these connectives are not commutative if either or both of the expressions P, Q have side effects. Also, a conditional, which in some sense corresponds to the material conditional connective, is essentially non-Boolean because for if (P) then Q;, the consequent Q is not executed if the antecedent P is false (although a compound as a whole is successful ≈ "true" in such case). This is closer to intuitionist and constructivist views on the material conditional— rather than to classical logic's views.

Set theory

[edit]

Logical connectives are used to define the fundamental operations of set theory,[21] as follows:

Set theory operations and connectives
Set operation Connective Definition
Intersection Conjunction [22][23][24]
Union Disjunction [25][22][23]
Complement Negation [26][23][27]
Subset Implication [28][23][29]
Equality Biconditional [28][23][30]

This definition of set equality is equivalent to the axiom of extensionality.

See also

[edit]

References

[edit]
  1. ^ Chao, C. (2023). 数理逻辑:形式化方法的应用 [Mathematical Logic: Applications of the Formalization Method] (in Chinese). Beijing: Preprint. pp. 15–28.
  2. ^ a b Heyting, A. (1930). "Die formalen Regeln der intuitionistischen Logik". Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (in German): 42–56.
  3. ^ Denis Roegel (2002), A brief survey of 20th century logical notations (see chart on page 2).
  4. ^ Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle a/S.: Verlag von Louis Nebert. p. 10.
  5. ^ a b c Russell (1908) Mathematical logic as based on the theory of types (American Journal of Mathematics 30, p222–262, also in From Frege to G?del edited by van Heijenoort).
  6. ^ Peano (1889) Arithmetices principia, nova methodo exposita.
  7. ^ a b Sch?nfinkel (1924) über die Bausteine der mathematischen Logik, translated as On the building blocks of mathematical logic in From Frege to G?del edited by van Heijenoort.
  8. ^ Peirce (1867) On an improvement in Boole's calculus of logic.
  9. ^ Hilbert, D. (1918). Bernays, P. (ed.). Prinzipien der Mathematik. Lecture notes at Universit?t G?ttingen, Winter Semester, 1917-1918; Reprinted as Hilbert, D. (2013). "Prinzipien der Mathematik". In Ewald, W.; Sieg, W. (eds.). David Hilbert's Lectures on the Foundations of Arithmetic and Logic 1917–1933. Heidelberg, New York, Dordrecht and London: Springer. pp. 59–221.
  10. ^ Bourbaki, N. (1954). Théorie des ensembles. Paris: Hermann & Cie, éditeurs. p. 14.
  11. ^ Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (in German). Halle a/S.: Verlag von Louis Nebert. p. 15.
  12. ^ Becker, A. (1933). Die Aristotelische Theorie der M?glichkeitsschl?sse: Eine logisch-philologische Untersuchung der Kapitel 13-22 von Aristoteles' Analytica priora I (in German). Berlin: Junker und Dünnhaupt Verlag. p. 4.
  13. ^ Bourbaki, N. (1954). Théorie des ensembles (in French). Paris: Hermann & Cie, éditeurs. p. 32.
  14. ^ Gentzen (1934) Untersuchungen über das logische Schlie?en.
  15. ^ Chazal (1996) : éléments de logique formelle.
  16. ^ Hilbert, D. (1905) [1904]. "über die Grundlagen der Logik und der Arithmetik". In Krazer, K. (ed.). Verhandlungen des Dritten Internationalen Mathematiker Kongresses in Heidelberg vom 8. bis 13. August 1904. pp. 174–185.
  17. ^ Bocheński (1959), A Précis of Mathematical Logic, passim.
  18. ^ O'Donnell, John; Hall, Cordelia; Page, Rex (2007). Discrete Mathematics Using a Computer. Springer. p. 120. ISBN 9781846285981..
  19. ^ Allen, Colin; Hand, Michael (2022). Logic primer (3rd ed.). Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-54364-4.
  20. ^ Jackson, Daniel (2012). Software Abstractions: Logic, Language, and Analysis. MIT Press. p. 263. ISBN 9780262017152..
  21. ^ Pinter, Charles C. (2014). A book of set theory. Mineola, New York: Dover Publications, Inc. pp. 26–29. ISBN 978-0-486-49708-2.
  22. ^ a b "Set operations". www.siue.edu. Retrieved 2025-08-06.
  23. ^ a b c d e "1.5 Logic and Sets". www.whitman.edu. Retrieved 2025-08-06.
  24. ^ "Theory Set". mirror.clarkson.edu. Retrieved 2025-08-06.
  25. ^ "Set Inclusion and Relations". autry.sites.grinnell.edu. Retrieved 2025-08-06.
  26. ^ "Complement and Set Difference". web.mnstate.edu. Retrieved 2025-08-06.
  27. ^ Cooper, A. "Set Operations and Subsets – Foundations of Mathematics". Retrieved 2025-08-06.
  28. ^ a b "Basic concepts". www.siue.edu. Retrieved 2025-08-06.
  29. ^ Cooper, A. "Set Operations and Subsets – Foundations of Mathematics". Retrieved 2025-08-06.
  30. ^ Cooper, A. "Set Operations and Subsets – Foundations of Mathematics". Retrieved 2025-08-06.

Sources

[edit]
[edit]
天下无双是什么生肖 熊猫喜欢吃什么食物 银镯子变黑是什么原因 梦见蛇是什么预兆 蒟蒻是什么意思
洋地黄是什么药 梦见自己头发长长了是什么意思 小粉红什么意思 梦见鸡死了是什么预兆 闺房之乐是什么意思
甲亢是什么病 吃什么最补肾 壁虎为什么是五毒之一 提报是什么意思 疯狂动物城狐狸叫什么
下午17点是什么时辰 护照是什么意思 霜降出什么生肖 image是什么意思 扁平疣是什么样子图片
羊吃什么食物hcv8jop5ns0r.cn 黄疸高是什么原因hcv8jop6ns8r.cn 什么病不能熬夜hcv8jop6ns5r.cn 为什么星星会眨眼hcv8jop1ns6r.cn 头七有什么规矩onlinewuye.com
失眠什么原因hcv8jop8ns4r.cn 梦见好多老鼠是什么意思hanqikai.com 白羊和什么星座最配hcv9jop6ns0r.cn 细菌性肺炎吃什么药hcv7jop6ns7r.cn 孕晚期吃什么水果好gangsutong.com
什么是血栓hcv8jop1ns7r.cn 大姨妈有黑色血块是什么原因youbangsi.com 子宫前位后位有什么区别hcv9jop4ns0r.cn 什么是闭口hcv8jop5ns5r.cn 胃不好吃什么好消化又有营养hcv9jop8ns3r.cn
来月经腰疼的厉害是什么原因hcv8jop1ns7r.cn xpe是什么材质hcv8jop3ns7r.cn 双顶径是指什么hcv8jop8ns9r.cn 宦官是什么意思hcv9jop2ns4r.cn 乳头痒是怎么回事是什么原因hcv9jop5ns1r.cn
百度